Wait a second...
Nepřihlášený uživatel
You are here: VŠCHT PrahaFCHTLaboratory of Inorganic Materials → Richard Pokorny
iduzel: 52731
idvazba: 60690
šablona: stranka_obrazek_vertical
čas: 28.5.2023 09:18:52
verze: 5263
uzivatel:
remoteAPIs:
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 52731
idvazba: 60690
---Nová url--- (newurl_...)
domena: 'lam.vscht.cz'
jazyk: 'en'
url: '/pokorny'
iduzel: 52731
path: 8548/20508/20510/20559/20611/20739/52731
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

Richard Pokorny

AA_
E-mail: richard.pokorny@vscht.cz

Phone:

+420 220 44 4318

Room: A 04 

 


Research

Richard is a head of the vitrification group at the University of Chemistry and Technology in Prague, Czech Republic. He specializes in the development of mathematical models for both fundamental and applied research. In recent years, he co-leads the development of the mathematical model of a cold cap, which will be used in support of the Waste Treatment and Immobilization Plant, currently built at Hanford, Washington, USA. Richard is interested in all kinds of problems related to batch-to-glass conversion and melter modeling.


Occupation and employer

  • 02/2016 – today: Researcher/Principal Investigator at UCT Prague, Faculty of Chemical Technology. Established a new research group in the field of glass science
  • 2010 – 2015: Research Associate (2010 – 2011) / Contractor (2011 – 2015) at Pacific Northwest National Laboratory, Richland, Washington, USA, Project: Mathematical Modeling of Cold Cap during Vitrification of Nuclear Waste. 


Education

  • 2011-2016: UCT Prague, Faculty of Chemical Engineering, PhD studies in Mathematical Modeling in Chemical Engineering, PhD thesis: "Modeling of structure-property relationships in hetero-phase materials"
  • 2008-2010: UCT Prague, Faculty of Chemical Engineering, Master’s Degree in Chemical Engineering, Bioengineering and Modeling of Processes. With honors, Rector’s award for excellent grades, GPA 1.00.
  • 2005-2008: UCT Prague, Faculty of Chemical Engineering, Bachelor’s Degree in Chemical Engineering, Bioengineering and Modeling of Processes. With honors, Rector’s award for excellent grades, GPA 1.19.


Current projects

  • The Ministry of Education, Youth and Sports of the Czech Republic, program Inter-Excellence – Inter-Action, USA,  č. LTAUSA18075Analysis of Foaming – Critical Batch-to-Glass Conversion Process. (2019 – 2022)
  • GACR, project No. 19-14179S: In-situ analysis of foam layer behavior at the batch-melt interface using laboratory-scale melter vessel (2019 - 2021)
  • Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 166789: Mathematical Modeling and Experimental Evaluation of Melter Cold Cap for Nuclear Waste Vitrification (2016-2020)
  • Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 206349: Batch-to-Glass Conversion and Chemical Durability of Glass for Vitrification of Low Activity Waste (2018-2019)


Other area of interest

  • 2011 (04-06), 2012 (05-06), 2013 (04-05): Visiting researcher at the Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, South Korea (Project: Mathematical modeling of fundamental processes affecting the melting rate in electric glass melters. Description: Three consecutive Ph.D. internships at the Division of Advanced Nuclear Engineering under the “World Class University Programme”.)


Publications in last 4 years

2020
  • Abboud  A.W., Guillen D.P., Pokorny R. (2020): Effect of Cold Cap Coverage and Emissivity on the Plenum Temperature in a Pilot‐Scale Waste Vitrification Melter. International Journal of Applied Glass Sciencedoi: 10.1111/ijag.15031
  • Hujova M., Klouzek J., Cutforth, D., Lee S., Miller M., Kruger A., Hrma P., Pokorny R. (2020): Feed-to-glass conversion during low activity waste vitrification. Ceramics Internationaldoi: 10.1016/j.ceramint.2019.12.256
  • Guillen D.P., Lee S., Hrma P., Traverso J., Pokorny R., Klouzek J., Kruger A.A. (2020): Evolution of Chromium, Manganese and Iron Oxidation State during Conversion of Nuclear Waste Melter Feed to Molten Glass. Journal of Non-Crystalline Solidsdoi: 10.1016/j.jnoncrysol.2019.119860
  • Lee S., McCarthy B., Hrma P., Chun J., Pokorny R., Klouzek J, Kruger A. (2020): Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: effects of temperature and incorporation of solid components. Journal of the American Ceramic Society. 103, 1615-1630. doi: 10.1111/jace.16876
  • Pokorny R., Hrma P., Lee S., Klouzek J., Choudhary M., Kruger A. (2020): Modeling batch melting: Roles of heat transfer and reaction kinetics. Journal of the American Ceramic Society. 103, 701-718. doi: 10.1111/jace.16898
2019
  • Goel A., McCloy J.S., Pokorny R., Kruger A.A. (2019): Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview.  Journal of Non-Crystalline Solids: Xdoi: 10.1016/j.nocx.2019.100033
  • Appel C.J., Klouzek J., N.J., Lee S., Dixon D.R., Hrma P., Pokorny R., Schweiger M.J., Kruger A.A. (2019): Effect of sucrose on foaming and melting behavior of a low-activity waste melter feed. Journal of the American Ceramic Society. 102, 7594-7605.doi: 10.1111/jace.16675
  • Hrma P., Klouzek J., Pokorny R., Lee S.,  Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Gas Evolution and Foaming. 102, 5853-5865.Journal of the American Ceramic Society. doi: 10.1111/jace.16484
  • Lee S., Hrma P., Pokorny R., Klouzek J., Eaton W., Kruger A.A. (2019). Glass production rate in electric furnaces for radioactive waste vitrification. 102, 5828-5842. Journal of the American Ceramic Society. doi: 10.1111/jace.16463 
  • Lee S., Hrma P., Pokorny R., Traverso J.J., Klouzek J., Schweiger M.J.,Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Effect of Heating Rate. International Journal of Applied Glass Science10, 401-413. doi: 10.1111/ijag.13104
  • Hujova M., Klouzek  J., Cutforth D.A., Lee S., Miller M.D., McCarthy B., Hrma P., Kruger A.A., Pokorny R. (2019). Cold-cap formation from a slurry feed during nuclear waste vitrification. Ceramics International. 45, 6405-6412. doi: 10.1016/j.ceramint.2018.12.127
  • Hrma P., Pokorny R., Lee S., Kruger A.A. (2019).  Heat Transfer from Glass Melt to Cold Cap: Melting Rate Correlation Equation. International Journal of Applied Glass Science10, 143-150. doi: 10.1111/ijag.12666
2018
  • Guillen D.P.,  Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018). Validation Hierarchy for Waste Vitrification Models. Transactions of the American Nuclear Society. 118, 1173-1176. Open Access
  • Guillen D.P., Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018): Development of a Validation Approach for an Integrated Waste Glass Melter Model. Nuclear Technology203, 244-260. doi: 10.1080/00295450.2018.1458559
  • McCarthy B.P., George J.L., Dixon D.R.,   Wheeler M., Cutforth D.A., Hrma P., Linn D., Chun J., Hujova M., Kruger, A.A., Pokorny R. (2018). Rheology of simulated radioactive waste slurry and cold cap during vitrification. Journal of the American Ceramic Society. 101, 5020-5029. doi: 10.1111/jace.15755.
  • Hujova M., Pokorny R., Klouzek J., Seungmin L., Traverso J.J., Schweiger M.J., Kruger A.A., Hrma P. (2018). Foaming during Nuclear Waste Melter Feeds Conversion to Glass: Application of Evolved Gas Analysis. International Journal of Applied Glass Science9, 487-498. doi: 10.1111/ijag.12353
2017
  • Lee S.,  Hrma P., Pokorny R., Klouzek J., VanderVeer B., Rodriguez C., Chun J., Schweiger M., Kruger A. (2017). Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed. MRS ADVANCES2, 11, 603-608. doi: 10.1557/adv.2016.644
  • Lee S., Hrma P., Pokorny R., Klouzek J., VanderVeer B.J., Dixon D.., Luksic S.A., Rodriguez C.P., Chun J.,  Schweiger M.J., Kruger A.A. (2017). Effect of melter feed foaming on heat flux to the cold cap. Journal of Nuclear Materials496, 54-65. doi: 10.1016/j.jnucmat.2017.09.016
  • Lee S., Hrma P., Kloužek J., Pokorný R., Hujová M., Dixon D.R., Schweiger M.J., Kruger A.A. (2017): Balance of oxygen throughout the conversion of a high-level waste melter feed to glass. Ceramics International43, 13113-13118.  doi: 10.1016/j.ceramint.2017.07.002
  • Hujova M., Pokorny R., Klouzek J., Dixon D.R., Cutforth A., Seungmin Lee, McCarthy B.P., Schweiger M.J., Kruger A.A., Hrma P. (2017): Determination of Heat Conductivity of Waste Glass Feed and its Applicability for Modeling the Batch-to-Glass Conversion. Journal of the American Ceramic Society. 100, 5096-5106. doi: 10.1111/jace.15052
  • Harris W. H., Guillen D. P., Kloužek J., Pokorný R., Yano T., Lee S.-M., Schweiger M. J., Hrma P. (2017): X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses. Journal of the American Ceramic Society100, 3883–3894. doi: 10.1111/jace.14895
  • Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z. J., Heilman-Moore, J. S., Bonham, C. C., Pokorny, R., Dixon, D. R., Schweiger, M. J. and Kruger, A. A. (2017). Effects of Heating Rate, Quartz Particle Size, Viscosity, and Form of Glass Additives on High-Level Waste Melter Feed Volume Expansion. Journal of the American Ceramic Society100, 583-591. doi:10.1111/jace.1462


Photogallery


Updated: 19.2.2020 18:05, Author: Richard Pokorný


Laboratory of Inorganic Materials Joint Workplace of The UCT Prague and The Institute of Rock Structure and Mechanics, v.v.i.
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015

Technical support by the Computing Centre.
switch to desktop version