Wait a second...
stdClass Object
(
    [nazev] => Laboratory of Inorganic Materials
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => cervena
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => 
    [ga_account] => 
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 0
    [pozadi1] => 6_0868.jpg
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'lam.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8548/20508/20510
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 20510
    [platne_od] => 31.10.2023 17:03:00
    [zmeneno_cas] => 31.10.2023 17:03:56.393301
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 25426
    [cms_time] => 1714085687
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [logo_mobile_href] => /
            [logo_mobile] => 
            [google_search] => 001523547858480163194:u-cbn29rzve
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Search
            [mobile_over_nadpis_jazyky] => Languages
            [mobile_over_nadpis_login] => Login
            [menu_home] => Homepage
            [drobecky] => You are here: VŠCHT PrahaFCHTLaboratory of Inorganic Materials
            [aktualizovano] => Updated
            [autor] => Author
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => Laboratory of Inorganic Materials
Joint Workplace of The UCT Prague and The Institute of Rock Structure and Mechanics, v.v.i.
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015

Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:Vladislava.Tonarova@vscht.cz [zobraz_desktop_verzi] => switch to desktop version [social_fb_title] => [social_tw_title] => [social_yt_title] => [zobraz_mobilni_verzi] => switch to mobile version [paticka_mapa_odkaz] => [nepodporovany_prohlizec] => For full access, please use different browser. [preloader] => Wait a second... [social_in_odkaz] => [social_li_odkaz] => ) [poduzel] => stdClass Object ( [20558] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20560] => stdClass Object ( [obsah] => [iduzel] => 20560 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20561] => stdClass Object ( [obsah] => [iduzel] => 20561 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20562] => stdClass Object ( [obsah] => [iduzel] => 20562 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20558 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20559] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20563] => stdClass Object ( [nazev] => [seo_title] => Laboratory of Inorganic Materials [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory of Inorganic Materials is joint working place of the University of Chemistry and Technology Prague and the Institute of rock structure and mechanics ASCR, v.v.i. Laboratory activity evenly covers the area of education and both basic and applied research.


In the pedagogical field we are involved in the education of the bachelor study program Chemistry and Materials Technology, master's degree program Inorganic Non-metallic Materials and postgraduate program Chemistry and Technology of Inorganic Materials.
     

Our research activities are focused on the study of glass melting processes and materials for applications in photonics.

 šířka 215px

Melting space for the vitrification of radioactive materials

For students

  • Interesting topics of student works
  • Excellently equipped laboratories
  • Pleasant working environment


Research areas

  • Melting processes and their simulation
  • New glass melting concepts
  • Development of new glasses
  • Materials for photonics
Bubble in glass containig Na2SO4 condensate  
[iduzel] => 20563 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [23019] => stdClass Object ( [nazev] => Studies [seo_title] => Studies [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory members are involved in the education within bachelor and master study programs Chemistry and Materials. Doctoral students of the study program Chemistry and Technology of Inorganic Materials work closely with us when assisting solved research projects, completing required coursework and writing and defending a dissertation about their research project.

 šířka 215px

šířka 215px

The result of the mathematical model of the flow in the melting chamber - sectional view showing the formation of spiral flow, which allows to increase the efficiency of the melting process.

Image analysis - measurement of the size of a bubble in the melt.

[iduzel] => 23019 [canonical_url] => //lam.vscht.cz/23019 [skupina_www] => Array ( ) [url] => /[en]/23019 [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [20611] => stdClass Object ( [nazev] => Department [seo_title] => Department [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory of Inorganic Materials was created from the original Laboratory for chemistry and technology of silicates and ICT Prague and ASCR founded in 1961. In 2012, the Laboratory was transformed into a Joint workplace of the University of Chemistry and Technology Prague UCT Prague) and the Institute of Rock Structure and Mechanics ASCR, v.v.i. The Laboratory cooperates with materials-oriented UCT Prague departments, especially the Department of glass and ceramics. In addition to the labs in UCT Prague (Building A, Room A04), we also work at the Institute of Rock Structure and Mechanics ASCR v.v.i., V Holešovičkách 41, 180 00 Prague 8.

šířka 450px

Temperature distribution on the top melt level in a glass melting space

[urlnadstranka] => [obrazek] => [iduzel] => 20611 [canonical_url] => [skupina_www] => Array ( ) [url] => /department [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [20648] => stdClass Object ( [nazev] => Postgraduate study programme [seo_title] => Postgraduate study programme [seo_desc] => [autor] => [autor_email] => [obsah] =>

Postgraduate study programme: Chemistry and Technology of Materials
Field of study: Chemistry and technology of inorganic materials

Themes of the postgraduate studies

  • Homogenization processes in glass preparation by melting

Supervisor: Prof. Ing. Lubomír Němec, DrSc.
Supervisor specialist:
Doc.Ing. Jaroslav Kloužek, CSc.
The glass preparation from crystalline raw materials involves several processes which form a homogeneous glass melt from the arising mixture of melt, undissolved particles and bubbles. The kinetics of the dissolution and separation (bubble removal) processes in the stage of melt affects substantially the energy consumption and melting performance of the glass melting spaces. The significant factors of enhancement of the dissolution processes are the natural and forced convection of the melt whereas the application of an additive force as the centrifugal force, e.g., accelerates the bubble separation from the melt. The important role of process topology in the continuous melting space is described by a new relative quantity called utilisation of the space. The space utilisation can be significantly affected by the character of the melt flow in the space. The topic applies the mathematical modelling of dissolution and separation processes in the melting spaces in order to define the optimal conditions and design of the glass melting spaces.

 

  • Heavy metal oxide glasses

Supervisor: Doc. Ing. Jaroslav Kloužek, CSc.
Supervisor specialist: Ing. Petr Kostka, Ph.D.
The glass network of heavy metal oxide glasses is formed by oxides such as TeO2, GeO2 or Sb2O3 instead of SiO2. These glasses stand out in comparison with conventional glasses particularly by wide interval of transparency ranging up to much longer wavelengths, lower phonon energies, higher refractive index, outstanding nonlinear properties, high solubility of rare-earth ions accompanied by high quantum yield of radiative transition etc. The work will focus on the preparation and characterization of new materials – glasses – containing antimony and/or bismuth oxides. Characterization of the prepared materials will include their basic properties such as density, molar volume, thermal stability, chemical resistance, hardness, optical transmission, refractive index, etc. Correlation between structural units forming the glass network and the resulting properties will be investigated and the influence of processing conditions during glass preparation on these properties will be evaluated.

 

  • Chalcogenide glasses and optical fibres

Supervisor: Doc. Ing. Jaroslav Kloužek, CSc.
Supervisor specialist: Ing. Petr Kostka, Ph.D.
Glass network of chalcogenide glasses is formed by S, Se or Te in combination with metals and/or semimetals. The presence of oxygen in these materials is usually undesirable. Real applications of this type of glass are conditioned mainly by high purity of the prepared or manufactured materials. Procedures for preparing high-purity chalcogenide glasses allowing for their use in fiber optics, already exist. The work will include the preparation of chalcogenide glasses, optimization of their composition, dotation of materials by rare earth ions and examination of the relationship between the vitreous matrix and the dopant. It is also possible to focus some of the efforts on new technological procedures for further material purification. The subsequent step will be to prepare preforms for optical fibres drawing, including the processing of structured preforms for drawing optical microstructured fibres (photonic crystal fibres) and characterization of prepared fibres.
 

  • Modeling of new glass melting spaces

Supervisor: Prof. Ing. Lubomír Němec, DrSc.
Supervisor specialist:
Ing. Marcela Jebavá, Ph.D.
The new glass melting spaces are focused on the considerable decrease of the specific energy consumption joint with CO2 reducement and with high specific melting performance. Besides the phenomena kinetics, a great attention has to be paid to the utilisation of the space for the given phenomenon and to phenomena ordering. The objective of the work is to apply the new melting principles and mathematically model the melting spaces which fulfil the present energetic and efficiency requirements.

 

[iduzel] => 20648 [canonical_url] => //lam.vscht.cz/study-programme [skupina_www] => Array ( ) [url] => /study-programme [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20612] => stdClass Object ( [nazev] => [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

Research areas

Glass melting processes and their modelling

 

 New glass melting concepts

 šířka 215px

Mathematical modeling is traditional tool for the analysis of glass melting process. CFD methods  calculate velocity and temperature fiels ...

  šířka 215px New relative value – space utilization – quantitatively assesses melting processes in continuous melting space.  The current industrial furnaces...

Development of new types of glasses

 

Materials for photonics and optoelectronics

šířka 215px

The composition of the proposed glass is optimized in terms of the required properties. Colors affected by the redox state of the glass can be predicted ...

 

originál

The industrial development is coming with a requirement of new materials. In optic and optoelectronic ...

Research of processes for vitrification of nuclear waste

     
Cold cap (originál) Solving the problem of immobilizing a large amount of nuclear waste coming from the production of plutonium is the actual question ...      

 


Experimental techniques

Preparation of glasses under defined conditions

šířka 450px

Visual observation of glass melting processes

Solubilities of gases in melts

Diffusion coefficients of gases in melts

Image analysis

Evolved gas analysis

Oxygen partial pressure in melts

Polarized light microscopy

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 20612 [canonical_url] => [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20738] => stdClass Object ( [nazev] => [seo_title] => Contact Us [seo_desc] => [autor] => [autor_email] => [obsah] =>

UCT Prague                                                            

IRSM ASCR, v.v.i.

 

University of Chemistry and Technology Prague

Laboratory of Inorganic Materials

Technická 5

166 28 Prague 6

Czech Republic

 

Tel.  +420 22044 5192 (l. 4318, 5195)

E-mail: Jaroslav.Klouzek@vscht.cz

 
 

Institute of Rock Structure and Mechanics ASCR, v.v.i.

Laboratory of Inorganic Materials

V Holešovičkách 41

180 00 Prague 8

Czech Republic

 

Tel.  +420 266009 421 (l. 423)

Public transportation:

Metro Line "A" to Dejvicka station, exit to colleges.

Public transportation:

Metro Line "C" to Holešovice station, exit to Kobylisy, Prosek,

then by bus 102, 210 to Vychovatelna station.

Metro Line  "B" to Palmovka station, exit to Divadlo pod Palmovkou,

then by tram 10, 24, 25 to Vychovatelna station.

[iduzel] => 20738 [canonical_url] => //lam.vscht.cz/contact [skupina_www] => Array ( ) [url] => /contact [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20559 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => 
    [seo_title] => Research
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

Research areas

Glass melting processes and their modelling

 

 New glass melting concepts

 šířka 215px

Mathematical modeling is traditional tool for the analysis of glass melting process. CFD methods  calculate velocity and temperature fiels ...

  šířka 215px New relative value – space utilization – quantitatively assesses melting processes in continuous melting space.  The current industrial furnaces...

Development of new types of glasses

 

Materials for photonics and optoelectronics

šířka 215px

The composition of the proposed glass is optimized in terms of the required properties. Colors affected by the redox state of the glass can be predicted ...

 

originál

The industrial development is coming with a requirement of new materials. In optic and optoelectronic ...

Research of processes for vitrification of nuclear waste

     
Cold cap (originál) Solving the problem of immobilizing a large amount of nuclear waste coming from the production of plutonium is the actual question ...      

 


Experimental techniques

Preparation of glasses under defined conditions

šířka 450px

Visual observation of glass melting processes

Solubilities of gases in melts

Diffusion coefficients of gases in melts

Image analysis

Evolved gas analysis

Oxygen partial pressure in melts

Polarized light microscopy

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'lam.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/research' [newurl_iduzel] => 20612 [newurl_path] => 8548/20508/20510/20559/20612 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 20612 [platne_od] => 27.04.2021 11:08:00 [zmeneno_cas] => 27.04.2021 11:08:21.434843 [zmeneno_uzivatel_jmeno] => Jan Kříž [canonical_url] => [idvazba] => 25530 [cms_time] => 1714085686 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [20743] => stdClass Object ( [nazev] => Glass melting processes and their modelling [seo_title] => Glass melting processes and their modelling [seo_desc] => [autor] => [autor_email] => [obsah] =>

Mathematical simulation of glass melting processes

šířka 215px

Mathematical modeling is traditional tool for the analysis of glass melting processes. CFD methods (Computed Fluid Dynamics) simulation based on the transfer of mass, momentum and energy calculate velocity and temperature of the melt in the melter. Figure shows the calculated temperature fields on the melter top melt surface.

 Bubble behaviour in glass melts

 

bub-trub.jpg (27971 bytes)

Gaseous or solid inclusions are the most common cause unacceptable product defects and may adversely affect the operation of the device. For a description of their behavior in the melt, we use a combination of experimental and mathematical techniques. The experiments reveal the mechanism of controlling phenomena, provide the input data and verify the mathematical model. Mathematical description, which is based on a set of differential equations describing the rate of change of the bubble size and composition is usually applied to the pre-computed velocity and temperature fields. Figure shows the sequence of visual observation of changes in bubble size, which is used to verify the mathematical description of the interaction of bubbles with the melt.

Nucleation of bubbles

šířka 215px

 Methods of high-temperature observation and image analysis were used to determine the temperature at which bubbles nucleate at a platinum wire immersed in the glass melt. Bubbles growing during slow linear increase in temperature were identified and their diameter measured. The dependence between the diameter of bubbles and the temperature was extrapolated to zero size of the respective bubbles, and thus determines the temperature of nucleation.

→ Videofile of the experiment

Chemical reactions evolving gases

šířka 215px

In particular, reactions of sulfur compounds with reducing or oxidizing agents affect nucleation and separation bubbles, foaming of the melt and dissolution of the refractory particles.

šířka 450px

Influencing the reactions kinetics can optimize the melting process.

Corrosion of refractories by melts

šířka 215px Isothermal static or dynamic corrosion tests follow the mechanism and kinetics of corrosion processes, evaluates changes in the microstructure of the refractories and predict the amount resulting from defects in the glass - blisters and crystalline inclusions. Figure on the left shows an arrangement of the plate corrosion test. Figure on the right illustrates the change in microstructure of refractory materials due to corrosion by an alkali melt - the conversion of mullite grain to secondary tabular corundum.

šířka 215px

 Electrochemical processes at the interface of electrode and molten glass

 

originál

 The causes and mechanisms of corrosion, development of bubbles and the release of condensed reaction products at the interface of materials, in particular molybdenum, platinum and tin-oxide based material are studied. The following experimental techniques are used: the electrical potential monitoring, the evaluation of the direct electrode mass losses, the study of the interface electrode-melt by SEM analysis (Figure on the left - SEM image of the excluded Sb under a layer Mo2S3 on the Mo electrode) and visual observation of high-temperature processes in melt (Figure on the right - Development of oxygen bubbles on a Pt electrodes in a borosilicate glass melt under the passage of electrical current).

  originál

Identification of bubble sources in industrial melting space

šířka 215px

For the expected sources the laboratory measurements of the bubble size distribution, composition and release frequency of bubbles into the melt is performed. The results create a knowledge data base. Experimental values forms also the boundary conditions of the mathematical model of the bubble behavior in the melting furnace. The comparison of product defects analyses and the values obtained from the database and the results of the model makes possible to locate the source of the defects. Figures show examples of experimental tracking the bubble sources – determination of the size distribution and the number of bubbles released from the refractory at the bottom and walls of the melter (left) or from the interface between the batch and the melt (right).

šířka 215px

 

 Selected papers

  • Vernerová M., Kloužek J., Němec L. (2015). Reaction of soda-lime-silica glass melt with water vapour at melting temperatures. Journal of Non-Crystalline Solids, 416, 21-30. doi:10.1016/j.jnoncrysol.2015.02.020
  • Vernerová M., Cincibusová P., Kloužek J., Maehara T., Němec L. (2015). Method of examination of bubble nucleation in glass melts. Journal of Non-Crystalline Solids, 411, 59-67. doi:10.1016/j.jnoncrysol.2014.12.025
  • Cincibusová P., Němec L. (2015): Mathematical modelling of bubble removal from the glass melting channel with defined melt flow and the relation between the optimal flow conditions of bubble removal and sand dissolution. Glass Technol.: Eur. of Glass Sci. and Technol. Part A 56 (2), 52-62. Ingentaconnect
  • Matěj J., Jebavá M. (2014). Oxygen bubble development on a platinum electrode in borosilicate glass melt by the effect of alternating current. Ceramics-Silikáty, 58, 249-259. Open Access
  • Jebavá M., Němec L. (2013). Numerical study of glass fining in a pot melting space with different melt-flow patterns. Journal of Non-Crystalline Solids, 361, 47-56. doi:10.1016/j.jnoncrysol.2012.10.029
  • Němec L., Vernerová M., Cincibusová P., Jebavá M., Kloužek J. (2012). The semiempirical model of the multicomponent bubble behaviour in glass melts. Ceramics-Silikáty, 56, 367-373. Open Access
  • Jebavá M., Němec, L. (2012): The fining performance under the influence of physico-chemical parameters. Ceramics-Silikáty, 56, 286-293. Open Access
  • Matěj J., Langrová A. (2012). Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulphate.  Ceramics-Silikáty, 56, 280-285. Open Access
[poduzel] => Array ( ) [iduzel] => 20743 [canonical_url] => //lam.vscht.cz/research/glass-melting-processes-and-their-modelling [skupina_www] => Array ( ) [url] => /research/glass-melting-processes-and-their-modelling [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [41702] => stdClass Object ( [nazev] => Nuclear waste vitrification [seo_title] => Nuclear waste vitrification [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => 0002~~8_R1NwQA.jpg [ogobrazek] => [pozadi] => [obsah] =>

Research area

As part of an international collaboration, we are working in our laboratory to develop a model for the melting of the glass batch/feed in the melter. Using our mathematical model, we will be able to predict the glass production rate and help to optimize the entire melting process.

Nuclear Waste vitrification

In Hanford, in the northwest of the US in Washington, more than 200,000 m3 of radioactive waste is stored in underground tanks, a result of the plutonium production during the II. World war and Cold war. This waste is stored in 177 aging underground tanks, which have problems with leakage that leads to the contamination of underground and threatens the nearby Columbia River, the second largest river on the Pacific coast of North America.

In order to process and stabilize the radioactive waste, a Waste Treatment Plant (WTP) is now being built at Hanford. The radioactive waste will be mixed with glass-forming and glass-modifying chemicals and melted at 1150 °C in an electric furnace. The resulting glass will be poured into stainless-steel canisters, where the glass will cool and solidify. In the form of glass, the radioactive waste will be stable and safe for a long-term storage in an underground repository.

Although the vitrification of radioactive waste is a proven technology that has been successfully employed for decades, it has never been used on such a large scale and for such complex nuclear waste, as is stored at Hanford. The vitrification plant is thus a huge engineering challenge and one of the world's most complex remediation projects. For example, only the waste pre-treatment and separation plant (dividing the waste into low-activity and high-level fractions) has a ground plan of 165 x 65 meters, and is 12 floors high.

Our group has a long-history working on various aspects of waste glass melting at Hanford. In 2018, another two-year grant from Department of Energy (DoE USA) was awarded to our laboratory to work on the nuclear waste vitrification project at Hanford.

Selected publications

  • Lee S.,  Hrma P., Pokorny R., Klouzek J., VanderVeer B., Rodriguez C., Chun J., Schweiger M., Kruger A. (2017). Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed. MRS ADVANCES. 2, 11, 603-608. 
    doi: 10.1557/adv.2016.644
  • Lee S., Hrma P., Pokorny R., Klouzek J., VanderVeer B.J., Dixon D.., Luksic S.A., Rodriguez C.P., Chun J.,  Schweiger M.J., Kruger A.A. (2017). Effect of melter feed foaming on heat flux to the cold cap. Journal of Nuclear Materials496, 54-65. doi: 10.1016/j.jnucmat.2017.09.016
  • Lee S., Hrma P., Kloužek J., Pokorný R., Hujová M., Dixon D.R., Schweiger M.J., Kruger A.A. (2017): Balance of oxygen throughout the conversion of a high-level waste melter feed to glass. Ceramics International43, 13113-13118.  doi: 10.1016/j.ceramint.2017.07.002
  • Hujova M., Pokorny R., Klouzek J., Dixon D.R., Cutforth A., Seungmin Lee, McCarthy B.P., Michael J. Schweiger M.J., Kruger A.A., Hrma P. (2017): Determination of Heat Conductivity of Waste Glass Feed and its Applicability for Modeling the Batch-to-Glass Conversion. Journal of the American Ceramic Society. 100, 5096-5106.  doi: 10.1111/jace.15052
  • Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z. J., Heilman-Moore, J. S., Bonham, C. C., Pokorny, R., Dixon, D. R., Schweiger, M. J. and Kruger, A. A. (2017). Effects of Heating Rate, Quartz Particle Size, Viscosity, and Form of Glass Additives on High-Level Waste Melter Feed Volume Expansion. Jornal of the American Ceramic Societydoi:10.1111/jace.1462
  • Pokorný R., Hilliard Z., Dixon D., Schweiger M., Guillen D., Kruger A., Hrma P. (2015). One-Dimensional Cold Cap Model for Melters with Bubblers. Journal of the American Ceramic Society, 98, 3112-3118.
[urlnadstranka] => [poduzel] => stdClass Object ( [59068] => stdClass Object ( [nadpis] => [iduzel] => 59068 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => galerie [html] => [css] => [js] => [autonomni] => 0 ) ) [41703] => stdClass Object ( [nazev] => People [barva_pozadi] => cervena [uslideru] => false [text] =>
  • Richard Pokorny
  • Jaroslav Klouzek
  • Miroslava Hujova
[iduzel] => 41703 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) [41706] => stdClass Object ( [obsah] => [iduzel] => 41706 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [41704] => stdClass Object ( [nazev] => Experimental Techniques [barva_pozadi] => cervena [uslideru] => false [text] => [iduzel] => 41704 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) [41705] => stdClass Object ( [obsah] => [iduzel] => 41705 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 41702 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/vitrification [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [20744] => stdClass Object ( [nazev] => New glass melting concepts [seo_title] => New glass melting concepts [seo_desc] => [autor] => [autor_email] => [obsah] =>

Utilization of melting space

šířka 215px

New relative value – space utilization (u) – was introduced. u = v.τH / V (v - volume flow, τH - geometric residence time, and V - the volume of the reactor), The (u) value quantitatively assesses the main melting processes, i.e. the particle dissolution and the bubble removal in a continuous melting space. The (u) value is obtained by mathematical modeling and incorporates the dead volume (unused for processes) of melting space. The current industrial furnaces have a value of less than 0.1 due to disadvantage type of flow. Modeling of various types of flows in model space shows that the value up to 0.8 can be reached by establishing a certain type spiral flow (proportional to increase performance and reduce heat losses). Favorable modeling results are transmitted to the real melting facilities and also serve on the draft designs of new melting spaces.

Behaviour of bubbles in centrifugal field

 šířka 215px The competition of two phenomena takes place in the centrifugal field: bubble dissolution and centrifugation. Skimming is a faster process on favorable terms. Mathematical and experimental modeling can find optimal process conditions. Optimum conditions can be applied to melt glass or other viscous liquids, provided similar behavior of bubbles. The figure shows the dependence between time of the bubble removal and rotational velocity.

Behaviour of bubbles under reduced pressure

šířka 215px

Experimental modeling in laboratory conditions showed that the reduction of the external pressure in the range of 20 - 40 kPa at temperatures around 1300°C brings roughly the same intensity of the bubble removal process as in conventional melting furnaces working under normal pressure and at maximal temperatures in the melt above 1500°C. Moreover, it is often possible to significantly reduce the concentration of environmentally problematic refining agents. The figure on the left presents the results of a parametric study showing the dependence of the space pull rate on temperature and pressure.

Bubble trajectories in low pressure melting space

 

  Selected papers

  • Jebavá M., Dyrčíková P., Němec L. (2015): Modelling of the controlled melt flow in a glass melting space — Its melting performance and heat losses. Journal of Non-Crystalline Solids 430: 52-63. doi:10.1016/j.jnoncrysol.2015.08.039
  • Hrbek L., Dyrčíková P., Němec L., Jebavá M. (2014). Industrial opportunities of controlled melt flow during glass melting, part 2: Potential applications. Ceramics-Silikáty, 58(3), 202-209. Open Access
  • Dyrčíková P., Hrbek L., Němec L. (2014). Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation. Ceramics-Silikáty, 58(2), 111-117.  Open Access
  • Němec L., Jebavá M., Dyrčíková P. (2013). Glass melting phenomena, their ordering, and melting space utilisation. Ceramics-Silikáty, 57(4), 275-284. Open Access
  • Jebavá M., Němec L. (2012). The fining performance under the effect of physico-chemical parameters. Ceramics-Silikáty, 56(3), 286-293. Open Access
  • Němec L., Cincibusová P. (2012). Sand dissolution and bubble removal in a model glass-melting channel with a uniform melt flow. Glass Technol.: Eur. J. Glass Sci. Technol. A, 53(6), 279-286. Ingentaconnect
  • Cincibusová P., Němec L. (2012). Sand dissolution and bubble removal in a model glass-melting channel with a melt circulation. Glass Technol.: Eur. J. Glass Sci. Technol. A, 53(4), 150-157. Ingentaconnect
  • Polák M., Němec L. (2012). Mathematical modelling of sand dissolution in a glass melting channel with controlled glass flow. Journal of Non-Crystalline Solids, 358(9), 1210-1216. doi:10.1016/j.jnoncrysol.2012.02.021
  •  Tonarová V., Němec L., Kloužek J. (2011). The optimal parameters of bubble centrifuging in glass melts. Journal of Non-Crystalline Solids, 357, 3785-3790. doi:10.1016/j.jnoncrysol.2011.07.028

 Patents

  • Polák, M., Němec, L., Cincibusová, P., Jebavá, M., Brada, J., Trochta, M., Kloužek, J. (2015): Method of continuous glass melting under controlled convection of glass melt. Patent No. CZ C 03 B 5/027. UPV
  • Polák, M., Němec, L., Cincibusová, P., Jebavá, M., Brada, J., Trochta, M., Kloužek, J. (2014): Glass melting furnace for continuous glass melting with controlled melt convection. Patent No. CZ 304703. UPV
  • Němec, L., Kloužek, J., Tonarová, V., Jebavá, M. (2014): The device for glass melt fining by centrifuging. Patent No. CZ 304299. UPV
  • Němec, L., Kloužek, J., Tonarová, V., Jebavá, M. (2013): Method of glass fining by centrifuging. Patent No. CZ 304044. UPV

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 20744 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/new-glass-melting-concepts [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20745] => stdClass Object ( [nazev] => [seo_title] => New types of glasses [seo_desc] => [autor] => [autor_email] => [obsah] =>

Development of new types of crystal and coloured glasses

šířka 215px

Research is focused on eliminating oxides of toxic elements, notably lead and barium from the glass. The composition of the proposed glass is optimized in terms of the required technological and utiliyation properties. Colors affected by the redox state of the glass can be predicted by laboratory experiments, especially electrochemical measurements in glass melts. In addition, the laboratory experiments and proposed models follow the color formation by other mechanisms, such as crystalization of in the glass melts (Au, Ag and Cu ruby).

The figure shows a TEM image of gold nano crystals in a gold ruby glass.

 

Patents

 
  • Kloužek J., Polák M., Hřebíček M., Kaiser K., Tonarová V. (2012). Crystal non-lead and nonbaryum glass with content of lanthanum and niobium oxides. Patent No. CZ 303117. UPV
  • Kloužek, L. Němec, J. Tesař, M. Hřebíček, K. Kaiser (2010). Ruby glass coloured by gold. Patent No. CZ 302143. UPV
  • Kloužek, L. Němec, J. Tesař, M. Hřebíček, K. Kaiser (2010). Crystal glass without content of lead and baryum compound. Patent No. CZ 302142. UPV
  • Kloužek, L. Němec, J. Tesař, M. Hřebíček, K. Kaiser (2010). Coloured glasses without content of lead and baryum compound. Patent No. CZ 302144. UPV
  •  Němec L., Kloužek J., Hadrava S., Hřebíček M., Bicek Z. (2005). Lead- and barium-free crystal glass. Patent No. CZ 294797. UPV
[poduzel] => Array ( ) [iduzel] => 20745 [canonical_url] => //lam.vscht.cz/research/20745 [skupina_www] => Array ( ) [url] => /research/20745 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20746] => stdClass Object ( [nazev] => [seo_title] => Materials for photonics [seo_desc] => [autor] => [autor_email] => [obsah] =>

Materials for photonics and optoelectronics

šířka 450px

The industrial development is coming with other and other requests for a new materials. The way is same in optic and optoelectronic (interdisciplinary flied dealing with transfer and processing of optic signal) fields and in other related ones. The special glasses can be divided in following base group, as the schema of single description of researching problems shows:

Halide glasses

often toxic, volatilize by preparation, sensitive to humidity, radiation transmit in UV/VIS-MIR areas

Chalcogenide glasses

preparation must be done at inert atmosphere or vacuum (other way its react with an air), often content with toxic compound (As), radiation transmit in VIS/NIR-MIR areas

Heavy metal oxide (HMO) glasses

problems with the purity products, big disadvantage is containing OH- groups inductive of huge absorption at wave length 2.9 mm; radiation transmit in VIS-NIR/MIR areasMixed glassesfor example halide-oxygen, chalcigenide-halide, …

Application of special glasses:

  • Application of passive optical materials:

    transfer of optical signals (communication, remote spectroscopy, ...)

    energy transfer of giant-pulse laser (surgery, mechanical engineering, ...)

    image transfer through fiber bundle

    various fiber sensors

    lenses and instrumental windows

  • Application of active optical materials:

    fiber source of laser

    amplifier of optical signals

    various sensors

  • Application of nonlinear optical materials:

    (used the non-linearity of mass response by interaction with intensive rays)

    generation of secondary harmonic frequencies

    polyphoton absorption

    self-focusing instrument

 

Selected papers

  • Kubliha M., Soltani M.T., Trnovcová V., Legouera M., Labaš V., Kostka P., Le Coq D., Hamzaoui M. (2015): Electrical, dielectric, and optical properties of Sb2O3–Li2O–MoO3 glasses. Journal of Non-Crystalline Solids 428: 42-48. doi:10.1016/j.jnoncrysol.2015.07.021
  • Matějec V., Pedlíková J., Bartoň I., Zavadil J., Kostka P. (2015): Optical properties of As2S3 layers deposited from solutions. Journal of Non-Crystalline Solids. (in print) doi:10.1016/j.jnoncrysol.2015.04.027
  • Kostka P., Zavadil J., Iovu M.S., Ivanova Z.G., Furniss D., Seddon A.B. (2015): Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions. Journal of Alloys and Compounds. doi:10.1016/j.jallcom.2015.05.135
  • Zavadil, J., Ivanova, Z.G. Kostka, P., Hamzaoui, M., Soltani, M.T. (2014): Photoluminescence study of Er-doped zinc–sodium–antimonite glasses. Journal of Alloys and Compounds. 611: 111-116. doi:10.1016/j.jallcom.2014.05.102
  • Kubliha, M., Kostka, P., Trnovcová, V., Zavadil, J., Bednarčík, J., Labaš, V., Pedlíková, J., Dippel, A.Ch., Liermann, H.P., Psota, J. (2014): Local atomic structure and electric properties of Ge20Se80-xTex (x=0, 5, 10 and 15) glasses doped with Ho. Journal of Alloys and Compounds. 586: 308-313. doi:10.1016/j.jallcom.2013.10.059
  • Zavadil, J., Kubliha, M., Kostka, P., Iovu, M., Labas, V., Ivanova, Z.G. (2013): Investigation of electrical and optical properties of Ge–Ga–As–S glasses doped with rare-earth ions. Journal of Non-Crystalline Solids. 377(SI): 85-89. doi:10.1016/j.jnoncrysol.2013.02.009
  • Bošák, O., Kostka, P., Minárik, S., Trnovcová, V., Podolinčiaková, J., Zavadil, J. (2013): Influence of composition and preparation conditions on some physical properties of TeO2–Sb2O3–PbCl2 glasses. Journal of Non-Crystalline Solids. 377(SI): 74-78. doi:10.1016/j.jnoncrysol.2013.01.014
[poduzel] => Array ( ) [iduzel] => 20746 [canonical_url] => //lam.vscht.cz/research/20746 [skupina_www] => Array ( ) [url] => /research/20746 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20649] => stdClass Object ( [nazev] => Experimental Methods [seo_title] => Experimental Methods [seo_desc] => [autor] => [autor_email] => [obsah] =>

Experimental techniques

Preparation of glasses under defined conditions

šířka 450px

Visual observation of glass melting processes

Solubilities of gases in melts

Diffusion coefficients of gases in melts

Image analysis

Evolved gas analysis

Oxygen partial pressure in melts

Polarized light microscopy

[poduzel] => stdClass Object ( [20747] => stdClass Object ( [nazev] => Preparation of glasses under defined conditions [seo_title] => Preparation of glasses under defined conditions [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratorní pec s hermetickým topným prostorem umožňuje tavení vzorků v definované atmosféře v rozmezí tlaků 1-150 kPa při maximální teplotě 1400°C. Po vložení vzorku se probíhá několikanásobné opakované odčerpání a naplnění topného prostoru požadovaným plynem nebo směsí plynů. Během ohřevu plyn proudí topným prostorem. Při tavení v redukční atmosféře (vodík nebo jeho směs s dusíkem) se plyn na výstupu z prostoru spaluje vestavěným hořákem.

originál

originál

Pneumatický posuv vzorků do topného prostoru.

šířka 215px

Laboratorní pec s řídící jednotkou.

Schéma rozvodu plynů pro řízení atmosféry v topném prostoru

[iduzel] => 20747 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20747 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20747 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20748] => stdClass Object ( [nazev] => Visual observation of glass melting processes [seo_title] => Visual observation of glass melting processes [seo_desc] => [autor] => [autor_email] => [obsah] =>

Metoda využívá průhlednosti většiny skel ve viditelné oblasti (případně v blízké infračervené kolem 2 mm) i za tavicích teplot. Principem metody je sledování vzorku nacházejícího se v křemenné kyvetě a v laboratorní peci s průhledem. Průběh děje je sledován digitální videokamerou. Obrazový záznam se vyhodnocuje analyzátorem obrazu Lucia.Při sledování taveniny s bublinami se snímá buď přímo obraz vzniklý po roztavení vsázky, nebo se v již utavené a vyčeřené sklovině připravují vyfouknutím umělé bubliny, které se pak dále sledují. Metoda je využívána k vysokoteplotnímu pozorování tavicího procesu, čeřicích procesů, tvorbě pěny v tavenině, pozorováním hladiny lze získat informaci o chování pěny nebo o stabilitě bublin na hladině.

Tato metoda se též používá ke stanovení teploty nukleace bublin. Teplota sekundární tvorby bublin (reboilu) je stanovována na základě přímého vizuálního sledování vzniku bublin na platinovém drátku ponořeného do skla. Teplota vzorku je zvyšována rychlostí 2°C/min. Pozorovaný růst vytvořené bubliny s teplotou je vyhodnocen analyzátorem obrazu a teplota reboilu je stanovena extrapolací na nulový rozměr bubliny.

Další použití metody je sledování vývoje bublin ze žárovzdorných materiálů - korozní testy žárovzdorných materiálů.

výška 215px

Schéma experimentální metody

 výška 215px  výška 215px

Uvolňování bublin ze žáromateriálu

Vyhodnocení měření pomocí obrazové analýzy

výška 215px

Sledování růstu a rozpouštění bublin

[iduzel] => 20748 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20748 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20748 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20749] => stdClass Object ( [nazev] => Solubilities of gases in melts [seo_title] => Solubilities of gases in melts [seo_desc] => [autor] => [autor_email] => [obsah] =>
 Stanovení rozpustností plynů v taveninách se skládá ze dvou kroků. V prvním kroku probíhá sycení taveniny čistým plynem. Po dosažení rovnováhy se tavenina rychle ochladí na pokojovou teplotu. Koncentrace rozpuštěného plynu je pak stanovena plynově chromatografickou metodou popsanou dále. Principem metody stanovení plynů rozpuštěných v tavenině skla je kontinuální extrakce vzorku proudem inertního plynu a následná chromatografická analýza uvolněných plynů. Analyzovaný vzorek skla ve formě trámečku s rozměry 5 x 5 x 10 mm je umístěn ve zkumavce z křemenného skla zasunuté v laboratorní trubkové peci vyhřáté na teplotu 1500 °C. U dna zkumavky ústí kapilára z křemenného skla, kterou proudí helium. Uvolněné plyny se zachycují v koncentrovací smyčce ponořené v kapalném dusíku. Po ukončení extrakce (60 minut) se smyčka rychle zahřeje ponořením do horkého oleje a přepojí do okruhu nosného plynu chromatografu. Metoda stanovení umožňuje současné stanovení oxidu uhličitého, kyslíku, dusíku a oxidu sírového. Ostatní ve skle rozpuštěné plyny, tzn. vodní páru, a případně argon, nelze v uvedeném uspořádání stanovit.
výška 215px

výška 215px

Měřící aparatura pro analýzu plynů v taveninách

Schéma sycení taveniny plynem

   

Schéma aparatury pro stanovení plynů v taveninách

  1. Analyzovaný vzorek
  2. Koncentrovací smyčka 
  3. Šesticestný ventil 
  4. Kolona s Porapakem QS 
  5. Kolona s Molekulovým sítem 5A 
  6. Osmicestný ventil s kalibračními smyčkami S1 a S2
  7. Tepelně vodivostní detektor

 

výška 215px
[iduzel] => 20749 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20749 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20749 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20750] => stdClass Object ( [nazev] => Diffusion coefficients of gases in melts [seo_title] => Diffusion coefficients of gases in melts [seo_desc] => [autor] => [autor_email] => [obsah] =>

Princip metody je zřejmý z obrázku 1. Plyn, jehož difúzní koeficient se měří se zavede platinovou trubičkou do válcovité nádobky z křemenného skla, která se nachází těsně nad hladinou roztaveného skla uvnitř optické kyvety umístěné v laboratorní peci. Nádobka se po naplnění plynem zasune pod hladinu taveniny. Absorpce plynu se indikuje vzestupem taveniny uvnitř nádobky, který je snímán videokamerou speciálním otvorem v boku laboratorní pece, viz obr. 2. K vyhodnocení měření se používá analyzátor obrazu, měřící vzdálenost rozhraní plyn-tavenina od horního konce nádobky.

 

 

výška 215px

 

Schéma experimentálního uspořádání metody 1 - kyveta s taveninou skla 2 - válcovitá měřící nádobka z křemenného skla 3 - držák měřící nádobky 4 - pohybující se rozhraní plyn-tavenina 5 - hladina taveniny uvnitř kyvety

 

výška 215px

Pohyb rozhraní plyn-tavenina při měření difúzního koeficientu vodní páry sodno-vápenato-křemičité sklovině, teplota 1200 °C. a) 15000 s, b) 20000 s, c) 40000 s, d) 60000 s

[iduzel] => 20750 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20750 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20750 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20751] => stdClass Object ( [nazev] => Image analysis [seo_title] => Image analysis [seo_desc] => [autor] => [autor_email] => [obsah] =>

Používáme systém LUCIA (Laboratory Universal Computing Image Analysis) vyvinutý firmou Laboratory Imaging. Analyzátor obrazu tvoří standardní osobní počítač se zabudovanou obrazovou kartou umožňující přímo snímat obrazový signál z videokamery nebo z videorekordéru. Při zpracování obrazu z mikroskopu nebo z vysokoteplotního sledování dějů v taveninách využíváme obvykle funkce měření délky a počtu a rozdělení velikosti částic.

 

výška 215px

Měření posunu rozhraní plyn-tavenina uvnitř nádobky z křemenného

skla při stanovení difúzního koeficientu plynu v tavenině.

Měření počtu a rozdělení velkostí bublin uvolňovaných ze žáromateriálu do taveniny: 

 výška 215px

Původní obrázek 

 

výška 215px

Úprava kontrastu

 

výška 215px

Měření pole uvnitř měřícího rámečku

 

výška 215px

Výsledek měření

[iduzel] => 20751 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20751 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20751 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20752] => stdClass Object ( [nazev] => Evolved gas analysis [seo_title] => Evolved gas analysis [seo_desc] => [autor] => [autor_email] => [obsah] =>

 Měřící aparatura je stejná jako v případě analýzy plynů rozpuštěných v taveninách. Analyzovaný vzorek vstupní směsi sklářských surovin je umístěn ve zkumavce z křemenného skla zasunuté v laboratorní trubkové peci. U dna zkumavky ústí kapilára z křemenného skla, kterou proudí helium. Teplota v peci se zvyšuje definovanou lineární rychlostí. Helium unáší uvolněné plyny do dávkovacích smyček plynového chromatografu. Výsledkem analýzy je teplotní závislost množství uvolněných plynů.

výška 215px

šířka 215px

Měřicí aparatura

Analýza uvolněných plynů vsázky Na2O-CaO-SiO2 skla s přídavkem C a Na2SO4

[iduzel] => 20752 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20752 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20752 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20753] => stdClass Object ( [nazev] => Oxygen partial pressure in melts [seo_title] => Oxygen partial pressure in melts [seo_desc] => [autor] => [autor_email] => [obsah] =>

Při posuzování podmínek vzniku vad ve sklovině hraje velmi důležitou roli i tzv. redox stavu skloviny. Redox stav vyjadřuje vztah mezi vyššími a nižšími oxidačními formami iontů přechodných kovů, přítomných ve sklovině. Jedná se především o ionty železa, chrómu, barvících oxidů a dále čeřících přísad. Měření redox stavu umožňuje kontrolu výsledné barvy skloviny, jejího ohřívání i ochlazování (hodnota efektivní tepelné vodivosti) a průběhu odstraňování bublin (čeřící proces). Hodnota redox stavu skloviny je rovněž významným údajem při výpočtech rozložení oxidačně-redukčních složek ve sklářských tavících prostorech, při výpočtu chování bublin, významných pro optimalizaci čeřícího procesu a pro identifikaci zdrojů bublin. Komerčně dostupnou metodou měření redox stavu skloviny je systém Rapidoxâ Principem stanovení je elektrochemické měření rovnovážného napětí mezi referenční a měřící elektrodou. Měřící elektrodu tvoří Pt nebo Ir drát. Referenční elektroda je umístěna ve směsi Ni/NiO zaručující definovaný parciální tlak kyslíku. Vodivé spojení mezi měřenou taveninou a refereční směsí tvoří přepážka z oxidu zirkoničitého v kubické modifikaci. Z naměřené hodnoty elektromotorického napětí E (V) se za pomoci Nernstovy rovnice vypočte parciální tlak kyslíku:

originál

kde: F - Faradayova konstanta (96 500 C) R - plynová konstanta (8,314 J mol-1K-1) T - absolutní teplota Tabulka 2 uvádí hodnoty parciálního tlaku kyslíku ve vybraných typech sklovin při teplotě 1200 °C.

 

Parciální tlak kyslíku v některých typech průmyslových sklovin při teplotě 1200 °C.

Sklovina pO2 (Pa)
float  8000 
bílá obalová 10000 
barnatý křišťál  1000 
zelená obalová 350 
amber  5 x 10-4

 

šířka 215px

výška 215px

Měřící systém Rapidox

Měřící sonda

[iduzel] => 20753 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20753 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20753 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20754] => stdClass Object ( [nazev] => Polarized light microscopy [seo_title] => Polarized light microscopy [seo_desc] => [autor] => [autor_email] => [obsah] =>

Polarizační mikroskopie si přes svou více jak 170ti letou tradici stále udržuje platné místo v oboru studia materiálů. Metoda využívá interakce polarizovaného světla s opticky anisotropními látkami, při které dochází k tzv. dvojlomu. Původní paprsek se po průchodu vzorkem rozdělí na dva nové, řádný a mimořádný, které jsou navzájem fázově posunuté (šíří se různou rychlostí) a kmitají v různých rovinách. V analyzátoru mikroskopu se oba paprsky složí do stejné roviny kmitu a jejich fázový posun se projeví vznikem interferenčních barev. Polarizační mikroskopii lze proto charakterizovat jako metodu zvýšení kontrastu mikroskopického obrazu. Použití však nachází i dnes jako doplňková metoda identifikace krystalických látek, např. měřením výše dvojlomu s použitím Berekova kompenzátoru.

 

výška 215px

Polarizační mikroskop Olympus BX 51P

 

výška 215px

Michel-Lévyho stupnice interferenčních barev pro určování výše dvojlomu

[iduzel] => 20754 [canonical_url] => //lam.vscht.cz/research/experimental-methods/20754 [skupina_www] => Array ( ) [url] => /research/experimental-methods/20754 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 20649 [canonical_url] => //lam.vscht.cz/research/experimental-methods [skupina_www] => Array ( ) [url] => /research/experimental-methods [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

Laboratory of Inorganic Materials Joint Workplace of The UCT Prague and The Institute of Rock Structure and Mechanics, v.v.i.
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015

Technical support by the Computing Centre.
switch to desktop version