Wait a second...
stdClass Object
(
    [nazev] => Laboratory of Inorganic Materials
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => cervena
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => 
    [ga_account] => 
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 0
    [pozadi1] => 6_0868.jpg
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'lam.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8548/20508/20510
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 20510
    [platne_od] => 31.10.2023 17:03:00
    [zmeneno_cas] => 31.10.2023 17:03:56.393301
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 25426
    [cms_time] => 1711647108
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [logo_mobile_href] => /
            [logo_mobile] => 
            [google_search] => 001523547858480163194:u-cbn29rzve
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Search
            [mobile_over_nadpis_jazyky] => Languages
            [mobile_over_nadpis_login] => Login
            [menu_home] => Homepage
            [drobecky] => You are here: VŠCHT PrahaFCHTLaboratory of Inorganic Materials
            [aktualizovano] => Updated
            [autor] => Author
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => Laboratory of Inorganic Materials
Joint Workplace of The UCT Prague and The Institute of Rock Structure and Mechanics, v.v.i.
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015

Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:Vladislava.Tonarova@vscht.cz [zobraz_desktop_verzi] => switch to desktop version [social_fb_title] => [social_tw_title] => [social_yt_title] => [zobraz_mobilni_verzi] => switch to mobile version [paticka_mapa_odkaz] => [nepodporovany_prohlizec] => For full access, please use different browser. [preloader] => Wait a second... [social_in_odkaz] => [social_li_odkaz] => ) [poduzel] => stdClass Object ( [20558] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20560] => stdClass Object ( [obsah] => [iduzel] => 20560 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20561] => stdClass Object ( [obsah] => [iduzel] => 20561 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20562] => stdClass Object ( [obsah] => [iduzel] => 20562 [canonical_url] => //lam.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20558 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20559] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20563] => stdClass Object ( [nazev] => [seo_title] => Laboratory of Inorganic Materials [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory of Inorganic Materials is joint working place of the University of Chemistry and Technology Prague and the Institute of rock structure and mechanics ASCR, v.v.i. Laboratory activity evenly covers the area of education and both basic and applied research.


In the pedagogical field we are involved in the education of the bachelor study program Chemistry and Materials Technology, master's degree program Inorganic Non-metallic Materials and postgraduate program Chemistry and Technology of Inorganic Materials.
     

Our research activities are focused on the study of glass melting processes and materials for applications in photonics.

 šířka 215px

Melting space for the vitrification of radioactive materials

For students

  • Interesting topics of student works
  • Excellently equipped laboratories
  • Pleasant working environment


Research areas

  • Melting processes and their simulation
  • New glass melting concepts
  • Development of new glasses
  • Materials for photonics
Bubble in glass containig Na2SO4 condensate  
[iduzel] => 20563 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [23019] => stdClass Object ( [nazev] => Studies [seo_title] => Studies [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory members are involved in the education within bachelor and master study programs Chemistry and Materials. Doctoral students of the study program Chemistry and Technology of Inorganic Materials work closely with us when assisting solved research projects, completing required coursework and writing and defending a dissertation about their research project.

 šířka 215px

šířka 215px

The result of the mathematical model of the flow in the melting chamber - sectional view showing the formation of spiral flow, which allows to increase the efficiency of the melting process.

Image analysis - measurement of the size of a bubble in the melt.

[iduzel] => 23019 [canonical_url] => //lam.vscht.cz/23019 [skupina_www] => Array ( ) [url] => /[en]/23019 [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [20611] => stdClass Object ( [nazev] => Department [seo_title] => Department [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratory of Inorganic Materials was created from the original Laboratory for chemistry and technology of silicates and ICT Prague and ASCR founded in 1961. In 2012, the Laboratory was transformed into a Joint workplace of the University of Chemistry and Technology Prague UCT Prague) and the Institute of Rock Structure and Mechanics ASCR, v.v.i. The Laboratory cooperates with materials-oriented UCT Prague departments, especially the Department of glass and ceramics. In addition to the labs in UCT Prague (Building A, Room A04), we also work at the Institute of Rock Structure and Mechanics ASCR v.v.i., V Holešovičkách 41, 180 00 Prague 8.

šířka 450px

Temperature distribution on the top melt level in a glass melting space

[urlnadstranka] => [obrazek] => [iduzel] => 20611 [canonical_url] => [skupina_www] => Array ( ) [url] => /department [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [20648] => stdClass Object ( [nazev] => Postgraduate study programme [seo_title] => Postgraduate study programme [seo_desc] => [autor] => [autor_email] => [obsah] =>

Postgraduate study programme: Chemistry and Technology of Materials
Field of study: Chemistry and technology of inorganic materials

Themes of the postgraduate studies

  • Homogenization processes in glass preparation by melting

Supervisor: Prof. Ing. Lubomír Němec, DrSc.
Supervisor specialist:
Doc.Ing. Jaroslav Kloužek, CSc.
The glass preparation from crystalline raw materials involves several processes which form a homogeneous glass melt from the arising mixture of melt, undissolved particles and bubbles. The kinetics of the dissolution and separation (bubble removal) processes in the stage of melt affects substantially the energy consumption and melting performance of the glass melting spaces. The significant factors of enhancement of the dissolution processes are the natural and forced convection of the melt whereas the application of an additive force as the centrifugal force, e.g., accelerates the bubble separation from the melt. The important role of process topology in the continuous melting space is described by a new relative quantity called utilisation of the space. The space utilisation can be significantly affected by the character of the melt flow in the space. The topic applies the mathematical modelling of dissolution and separation processes in the melting spaces in order to define the optimal conditions and design of the glass melting spaces.

 

  • Heavy metal oxide glasses

Supervisor: Doc. Ing. Jaroslav Kloužek, CSc.
Supervisor specialist: Ing. Petr Kostka, Ph.D.
The glass network of heavy metal oxide glasses is formed by oxides such as TeO2, GeO2 or Sb2O3 instead of SiO2. These glasses stand out in comparison with conventional glasses particularly by wide interval of transparency ranging up to much longer wavelengths, lower phonon energies, higher refractive index, outstanding nonlinear properties, high solubility of rare-earth ions accompanied by high quantum yield of radiative transition etc. The work will focus on the preparation and characterization of new materials – glasses – containing antimony and/or bismuth oxides. Characterization of the prepared materials will include their basic properties such as density, molar volume, thermal stability, chemical resistance, hardness, optical transmission, refractive index, etc. Correlation between structural units forming the glass network and the resulting properties will be investigated and the influence of processing conditions during glass preparation on these properties will be evaluated.

 

  • Chalcogenide glasses and optical fibres

Supervisor: Doc. Ing. Jaroslav Kloužek, CSc.
Supervisor specialist: Ing. Petr Kostka, Ph.D.
Glass network of chalcogenide glasses is formed by S, Se or Te in combination with metals and/or semimetals. The presence of oxygen in these materials is usually undesirable. Real applications of this type of glass are conditioned mainly by high purity of the prepared or manufactured materials. Procedures for preparing high-purity chalcogenide glasses allowing for their use in fiber optics, already exist. The work will include the preparation of chalcogenide glasses, optimization of their composition, dotation of materials by rare earth ions and examination of the relationship between the vitreous matrix and the dopant. It is also possible to focus some of the efforts on new technological procedures for further material purification. The subsequent step will be to prepare preforms for optical fibres drawing, including the processing of structured preforms for drawing optical microstructured fibres (photonic crystal fibres) and characterization of prepared fibres.
 

  • Modeling of new glass melting spaces

Supervisor: Prof. Ing. Lubomír Němec, DrSc.
Supervisor specialist:
Ing. Marcela Jebavá, Ph.D.
The new glass melting spaces are focused on the considerable decrease of the specific energy consumption joint with CO2 reducement and with high specific melting performance. Besides the phenomena kinetics, a great attention has to be paid to the utilisation of the space for the given phenomenon and to phenomena ordering. The objective of the work is to apply the new melting principles and mathematically model the melting spaces which fulfil the present energetic and efficiency requirements.

 

[iduzel] => 20648 [canonical_url] => //lam.vscht.cz/study-programme [skupina_www] => Array ( ) [url] => /study-programme [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20612] => stdClass Object ( [nazev] => [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

Research areas

Glass melting processes and their modelling

 

 New glass melting concepts

 šířka 215px

Mathematical modeling is traditional tool for the analysis of glass melting process. CFD methods  calculate velocity and temperature fiels ...

  šířka 215px New relative value – space utilization – quantitatively assesses melting processes in continuous melting space.  The current industrial furnaces...

Development of new types of glasses

 

Materials for photonics and optoelectronics

šířka 215px

The composition of the proposed glass is optimized in terms of the required properties. Colors affected by the redox state of the glass can be predicted ...

 

originál

The industrial development is coming with a requirement of new materials. In optic and optoelectronic ...

Research of processes for vitrification of nuclear waste

     
Cold cap (originál) Solving the problem of immobilizing a large amount of nuclear waste coming from the production of plutonium is the actual question ...      

 


Experimental techniques

Preparation of glasses under defined conditions

šířka 450px

Visual observation of glass melting processes

Solubilities of gases in melts

Diffusion coefficients of gases in melts

Image analysis

Evolved gas analysis

Oxygen partial pressure in melts

Polarized light microscopy

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 20612 [canonical_url] => [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20738] => stdClass Object ( [nazev] => [seo_title] => Contact Us [seo_desc] => [autor] => [autor_email] => [obsah] =>

UCT Prague                                                            

IRSM ASCR, v.v.i.

 

University of Chemistry and Technology Prague

Laboratory of Inorganic Materials

Technická 5

166 28 Prague 6

Czech Republic

 

Tel.  +420 22044 5192 (l. 4318, 5195)

E-mail: Jaroslav.Klouzek@vscht.cz

 
 

Institute of Rock Structure and Mechanics ASCR, v.v.i.

Laboratory of Inorganic Materials

V Holešovičkách 41

180 00 Prague 8

Czech Republic

 

Tel.  +420 266009 421 (l. 423)

Public transportation:

Metro Line "A" to Dejvicka station, exit to colleges.

Public transportation:

Metro Line "C" to Holešovice station, exit to Kobylisy, Prosek,

then by bus 102, 210 to Vychovatelna station.

Metro Line  "B" to Palmovka station, exit to Divadlo pod Palmovkou,

then by tram 10, 24, 25 to Vychovatelna station.

[iduzel] => 20738 [canonical_url] => //lam.vscht.cz/contact [skupina_www] => Array ( ) [url] => /contact [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20559 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Department
    [seo_title] => Department
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

Laboratory of Inorganic Materials was created from the original Laboratory for chemistry and technology of silicates and ICT Prague and ASCR founded in 1961. In 2012, the Laboratory was transformed into a Joint workplace of the University of Chemistry and Technology Prague UCT Prague) and the Institute of Rock Structure and Mechanics ASCR, v.v.i. The Laboratory cooperates with materials-oriented UCT Prague departments, especially the Department of glass and ceramics. In addition to the labs in UCT Prague (Building A, Room A04), we also work at the Institute of Rock Structure and Mechanics ASCR v.v.i., V Holešovičkách 41, 180 00 Prague 8.

šířka 450px

Temperature distribution on the top melt level in a glass melting space

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'lam.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/department' [newurl_iduzel] => 20611 [newurl_path] => 8548/20508/20510/20559/20611 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 20611 [platne_od] => 13.01.2020 10:29:00 [zmeneno_cas] => 13.01.2020 10:29:26.89349 [zmeneno_uzivatel_jmeno] => Jaroslav Kloužek [canonical_url] => [idvazba] => 25529 [cms_time] => 1711646808 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [20739] => stdClass Object ( [nazev] => Staff [seo_title] => Staff [seo_desc] => [autor] => [autor_email] => [obsah] =>

Head of the Department

Doc. Ing. Jaroslav Kloužek, CSc.

Deputy Head

Ing. Marcela Jebavá, Ph.D.

Secretary

Jana Hurníková

 

Researchers

Ing. Petra Cincibusová, Ph.D.

Prof. Ing. Lubomír Němec, DrSc.

Ing. Petr Kostka, Ph.D. 

Ing. Richard Pokorný, Ph.D. 

Ing. Vladislava Tonarová, Ph.D.
Ing. Miroslava Vernerová, Ph.D.

PhD. Students

Ing. Nikola Bašinová

Ing. Lukáš Hrbek

Ing. Miroslava Hujová

Ing. Petra Kocourková

[urlnadstranka] => [obrazek] => [poduzel] => stdClass Object ( [52731] => stdClass Object ( [nazev] => Richard Pokorny [seo_title] => Richard Pokorny [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => 0001~~c3SMBwA.png [ogobrazek] => [pozadi] => [obsah] =>
E-mail: richard.pokorny@vscht.cz

Phone:

+420 220 44 4318

Room:

A 04 

Scholar

Link

Scopus

57190863649

ORCID

0000-0002-9023-0381

 


Research

Richard is a head of the vitrification group at the University of Chemistry and Technology in Prague, Czech Republic. He specializes in the development of mathematical models for both fundamental and applied research. In recent years, he co-leads the development of the mathematical model of a cold cap, which will be used in support of the Waste Treatment and Immobilization Plant, currently built at Hanford, Washington, USA. Richard is interested in all kinds of problems related to batch-to-glass conversion and melter modeling.


Occupation and employer

  • 02/2016 – today: Researcher/Principal Investigator at UCT Prague, Faculty of Chemical Technology. Established a new research group in the field of glass science
  • 2010 – 2015: Research Associate (2010 – 2011) / Contractor (2011 – 2015) at Pacific Northwest National Laboratory, Richland, Washington, USA, Project: Mathematical Modeling of Cold Cap during Vitrification of Nuclear Waste. 


Education

  • 2011-2016: UCT Prague, Faculty of Chemical Engineering, PhD studies in Mathematical Modeling in Chemical Engineering, PhD thesis: "Modeling of structure-property relationships in hetero-phase materials"
  • 2005-2010: UCT Prague, Faculty of Chemical Engineering, Bachelor and Master’s Degree in Chemical Engineering, Bioengineering and Modeling of Processes.


Current projects

  • The Ministry of Education, Youth and Sports of the Czech Republic, program Inter-Excellence – Inter-Action II, USA,  č. LUAUS23062: Experimental and mathematical analysis of primary glass-forming melt properties, gas evolution, and their relation with primary foam production. (2023 – 2026)
  • Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 166789: Mathematical Modeling and Experimental Evaluation of Melter Cold Cap for Nuclear Waste Vitrification (2016-2024)


Past projects

  • The Ministry of Education, Youth and Sports of the Czech Republic, program Inter-Excellence – Inter-Action, USA,  č. LTAUSA18075Analysis of Foaming – Critical Batch-to-Glass Conversion Process. (2019 – 2022)
  • GACR, project No. 19-14179S: In-situ analysis of foam layer behavior at the batch-melt interface using laboratory-scale melter vessel (2019 - 2021)
  • Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 206349: Batch-to-Glass Conversion and Chemical Durability of Glass for Vitrification of Low Activity Waste (2018-2019)


Other area of interest

  • 2011 (04-06), 2012 (05-06), 2013 (04-05): Visiting researcher at the Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, South Korea (Project: Mathematical modeling of fundamental processes affecting the melting rate in electric glass melters. Description: Three consecutive Ph.D. internships at the Division of Advanced Nuclear Engineering under the “World Class University Programme”.)


Recent Publications

2023
  • Kunc J., Kloužek J., Vernerová M., Cincibusová P., Ferkl P., Hall M., Eaton W., Hrma P., Guillen D., Kruger A., Pokorný R. (2023): Effect of feed composition on the production of off-gases during vitrification of simulated low-activity nuclear waste. Progress in Nuclear Energy. 166, 104932. doi: 10.1016/j.pnucene.2023.104932
  • Ferkl P., Hrma P., Kloužek J., Kruger A., Pokorný R. (2023): Cold-cap structure in a slurry-fed electric melter. International Journal of Applied Glass Science. doi: 10.1111/ijag.16645.
  • Pokorný R., Vernerová M., Kloužek J., Cincibusová P., Kohoutková M., Pezl R., Ferkl P., Hrma P., Podor R., Schuller S.,Kruger A. (2023): Transient Melt Formation and its Effect on Conversion Phenomena during Nuclear Waste Vitrification – HT-ESEM Analysis. Journal of the American Ceramic Society. doi: 10.1111/jace.19361
  • Ferkl P., Hrma P., Klouzek J., Kruger A., Pokorny R. (2023): Effect of material properties on batch-to-glass conversion kinetics. International Journal of Applied Glass Science. doi: 10.1111/ijag.16631
  • Rigby J.C., Dixon D.R., Kloužek J., Pokorný R., Thompson P.B.J., Scrimshire A., Kruger A.A., Bell A.M.T., Bingham P.A. (2023): Alternative reductants for foam control during vitrification of high-iron High Level Waste (HLW) feeds. Journal of Non-Crystalline Solids. 608, 122240. doi: 10.1016/j.jnoncrysol.2023.122240
  • Ferkl P., Hrma P., Abboud A., Guillen D., Vernerová M., Kloužek J., Hall M., Kruger A., Pokorny R. (2023): Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter. International Journal of Applied Glass Science. doi: 10.1111/ijag.16615
  • Marcial J., Cicconi M., Pearce C., Klouzek J., Neeway J., Pokorny R., Vernerova M., McCloy J., Nienhuis E., Sjoblom R., Weaver J., Hand R., Hrma P., Neuville D., Kruger A. (2023): Effect of network connectivity on behavior of synthetic Broborg Hillfort glasses. Journal of the American Ceramic Society. 106, 1716. doi: 10.1111/jace.18778
  • Khawand J., Kloužek J., Vernerová M., Cincibusová P., Hrma P., Kruger A., Pokorný R. (2023): Effect of Sucrose on the Oxidation-Reduction Conditions and Retention of Rhenium during Vitrification of Low-Activity Waste. Journal of Nuclear Materials. 573, 154155. doi: 10.1016/j.jnucmat.2022.154155.

2022

  • Rigby J., Dixon D., Cutforth D., Marcial J., Klouzek J., Pokorny R., Kruger A., Scrimshire A., Bell M., Bingham P. (2022): Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials. Journal of Nuclear Materials.  569, 153946. doi: 10.1016/j.jnucmat.2022.153946
  • Marcial J., George J., Ferkl P., Pokorny R., Kissinger R., Crum J., Klouzek J., Hrma P., Kruger A., (2022): Elemental mapping and iron oxidation state measurement of synthetic low-activity waste feeds. Journal of Non-Crystalline Solids591, 121725. doi: 10.1016/j.jnoncrysol.2022.121725
  • Ferkl P., Hrma P., Abboud A., Guillen D., Khawand J., Kopal I., Kohoutková M., Vernerová M., Kloužek J., Hall M., Kruger A., Pokorný R. (2022): Conversion kinetics during melting of simulated nuclear waste glass feeds measured by dissolution of silica. Journal of Non-Crystalline Solids. 579, 121363. doi: 10.1016/j.jnoncrysol.2021.121363 
  • Marcial J., Luksic S., Klouzek J., Vernerova M., Cutforth D., Varga T., Hrma P., Kruger A., Pokorny R. (2022): In-situ x-ray and visual observation of foam morphology and behavior at the batch-melt interface during melting of simulated waste glass. Ceramics International. 48, 7975-7985. doi: 10.1016/j.ceramint.2021.11.344
  • Marcial J., Kloužek J., Vernerová M, Ferkl P., Lee S., Cutforth D., Hrma P., Kruger A., Pokorný R. (2022): Effect of Al and Fe sources on conversion of high-level nuclear waste feed to glass. Journal of Nuclear Materials. 559, 153423. doi: 10.1016/j.jnucmat.2021.153423

2021

  • Kloužek J., Cincibusová P., Vernerová M., Hrma P., Pokorný R. (2021): Visual observation of foaming at the batch-melt interface during melting of soda-lime-silica glass. Ceramics-Silikaty 65, 410-416. doi: 10.13168/cs.2021.0044
  • Ferkl P., Hrma P., Kloužek J., Vernerová M., Kruger A., Pokorný R. (2021): Model for batch-to-glass conversion: Coupling the heat transfer with conversion kinetics. Journal of Asian Ceramic Societies. 9, 652-664. doi: 10.1080/21870764.2021.1907914
  • Lee S., Cutforth D., Mar D., Klouzek J., Ferkl P., Dixon D., Pokorny R., Hall M., Eaton W., Hrma P., Kruger A. (2021): Melting rate correlation with batch properties and melter operating conditions during conversion of nuclear waste melter feeds to glasses. International Journal of Applied Glass Science12, 398-414. doi: 10.1111/ijag.15911
  • Luksic S., Pokorny R., Hrma P., Varga T., Rivers E., Buchko A., Klouzek J., Kruger A. (2021): Through a glass darkly: In-situ x-ray computed tomography imaging of feed melting in continuously fed laboratory-scale glass melter. Ceramics International. 47, 15807-15818. doi:  10.​1016/​j.​ceramint.​2021.​02.​153
  • Abboud A., Guillen D., Hrma P., Kruger A., Klouzek J., Pokorny R. (2021): Heat Transfer from Glass Melt to Cold Cap:  Computational Fluid Dyamics Study of Cavities beneath Cold Cap. International Journal of Applied Glass Science12, 233-244. doi: 10.1111/ijag.15863
  • Marcial J., Pokorný R., Kloužek J., Vernerová M., Lee S., Hrma P., Kruger A. (2021): Effect of water vapor and thermal history on nuclear waste feed conversion to glass. International Journal of Applied Glass Science12, 145-157. doi: 10.1111/ijag.15803
  • Ueda N., Vernerová M., Kloužek J., Ferkl P., Hrma P., Yano T., Pokorný R. (2021): Conversion kinetics of container glass batch melting. 103, 34-44. Journal of the American Ceramic Society. doi: 10.1111/jace.17406
2020
  • Lee S., Ferkl P., Pokorny R., Klouzek J., Hrma P., Eaton W., Kruger A. (2020): Simplified melting rate correlation for radioactive waste vitrification in electric furnaces. Journal of the American Ceramic Society. 103, 5573-5578.  doi: 10.1111/jace.17281
  • Luksic S., Pokorny R., Jaime G., Hrma P., Varga T., Reno L., Buchko A., Kruger A. (2020). In situ characterization of foam morphology during melting of simulated waste glass using x-ray computed tomography. Ceramics International. 46, 17176-17185. doi: 10.1016/j.ceramint.2020.02.215
  • Abboud  A.W., Guillen D.P., Pokorny R. (2020): Effect of Cold Cap Coverage and Emissivity on the Plenum Temperature in a Pilot‐Scale Waste Vitrification Melter. International Journal of Applied Glass Sciencedoi: 10.1111/ijag.15031
  • Hujova M., Klouzek J., Cutforth, D., Lee S., Miller M., Kruger A., Hrma P., Pokorny R. (2020): Feed-to-glass conversion during low activity waste vitrification. Ceramics Internationaldoi: 10.1016/j.ceramint.2019.12.256
  • Guillen D.P., Lee S., Hrma P., Traverso J., Pokorny R., Klouzek J., Kruger A.A. (2020): Evolution of Chromium, Manganese and Iron Oxidation State during Conversion of Nuclear Waste Melter Feed to Molten Glass. Journal of Non-Crystalline Solidsdoi: 10.1016/j.jnoncrysol.2019.119860
  • Lee S., McCarthy B., Hrma P., Chun J., Pokorny R., Klouzek J, Kruger A. (2020): Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: effects of temperature and incorporation of solid components. Journal of the American Ceramic Society. 103, 1615-1630. doi: 10.1111/jace.16876
  • Pokorny R., Hrma P., Lee S., Klouzek J., Choudhary M., Kruger A. (2020): Modeling batch melting: Roles of heat transfer and reaction kinetics. Journal of the American Ceramic Society. 103, 701-718. doi: 10.1111/jace.16898
2019
  • Goel A., McCloy J.S., Pokorny R., Kruger A.A. (2019): Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview.  Journal of Non-Crystalline Solids: Xdoi: 10.1016/j.nocx.2019.100033
  • Appel C.J., Klouzek J., N.J., Lee S., Dixon D.R., Hrma P., Pokorny R., Schweiger M.J., Kruger A.A. (2019): Effect of sucrose on foaming and melting behavior of a low-activity waste melter feed. Journal of the American Ceramic Society. 102, 7594-7605.doi: 10.1111/jace.16675
  • Hrma P., Klouzek J., Pokorny R., Lee S.,  Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Gas Evolution and Foaming. 102, 5853-5865.Journal of the American Ceramic Society. doi: 10.1111/jace.16484
  • Lee S., Hrma P., Pokorny R., Klouzek J., Eaton W., Kruger A.A. (2019). Glass production rate in electric furnaces for radioactive waste vitrification. 102, 5828-5842. Journal of the American Ceramic Society. doi: 10.1111/jace.16463 
  • Lee S., Hrma P., Pokorny R., Traverso J.J., Klouzek J., Schweiger M.J.,Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Effect of Heating Rate. International Journal of Applied Glass Science10, 401-413. doi: 10.1111/ijag.13104
  • Hujova M., Klouzek  J., Cutforth D.A., Lee S., Miller M.D., McCarthy B., Hrma P., Kruger A.A., Pokorny R. (2019). Cold-cap formation from a slurry feed during nuclear waste vitrification. Ceramics International. 45, 6405-6412. doi: 10.1016/j.ceramint.2018.12.127
  • Hrma P., Pokorny R., Lee S., Kruger A.A. (2019).  Heat Transfer from Glass Melt to Cold Cap: Melting Rate Correlation Equation. International Journal of Applied Glass Science10, 143-150. doi: 10.1111/ijag.12666
2018
  • Guillen D.P.,  Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018). Validation Hierarchy for Waste Vitrification Models. Transactions of the American Nuclear Society. 118, 1173-1176. Open Access
  • Guillen D.P., Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018): Development of a Validation Approach for an Integrated Waste Glass Melter Model. Nuclear Technology203, 244-260. doi: 10.1080/00295450.2018.1458559
  • McCarthy B.P., George J.L., Dixon D.R.,   Wheeler M., Cutforth D.A., Hrma P., Linn D., Chun J., Hujova M., Kruger, A.A., Pokorny R. (2018). Rheology of simulated radioactive waste slurry and cold cap during vitrification. Journal of the American Ceramic Society. 101, 5020-5029. doi: 10.1111/jace.15755.
  • Hujova M., Pokorny R., Klouzek J., Seungmin L., Traverso J.J., Schweiger M.J., Kruger A.A., Hrma P. (2018). Foaming during Nuclear Waste Melter Feeds Conversion to Glass: Application of Evolved Gas Analysis. International Journal of Applied Glass Science9, 487-498. doi: 10.1111/ijag.12353
2017
  • Lee S.,  Hrma P., Pokorny R., Klouzek J., VanderVeer B., Rodriguez C., Chun J., Schweiger M., Kruger A. (2017). Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed. MRS ADVANCES2, 11, 603-608. doi: 10.1557/adv.2016.644
  • Lee S., Hrma P., Pokorny R., Klouzek J., VanderVeer B.J., Dixon D.., Luksic S.A., Rodriguez C.P., Chun J.,  Schweiger M.J., Kruger A.A. (2017). Effect of melter feed foaming on heat flux to the cold cap. Journal of Nuclear Materials496, 54-65. doi: 10.1016/j.jnucmat.2017.09.016
  • Lee S., Hrma P., Kloužek J., Pokorný R., Hujová M., Dixon D.R., Schweiger M.J., Kruger A.A. (2017): Balance of oxygen throughout the conversion of a high-level waste melter feed to glass. Ceramics International43, 13113-13118.  doi: 10.1016/j.ceramint.2017.07.002
  • Hujova M., Pokorny R., Klouzek J., Dixon D.R., Cutforth A., Seungmin Lee, McCarthy B.P., Schweiger M.J., Kruger A.A., Hrma P. (2017): Determination of Heat Conductivity of Waste Glass Feed and its Applicability for Modeling the Batch-to-Glass Conversion. Journal of the American Ceramic Society. 100, 5096-5106. doi: 10.1111/jace.15052
  • Harris W. H., Guillen D. P., Kloužek J., Pokorný R., Yano T., Lee S.-M., Schweiger M. J., Hrma P. (2017): X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses. Journal of the American Ceramic Society100, 3883–3894. doi: 10.1111/jace.14895
  • Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z. J., Heilman-Moore, J. S., Bonham, C. C., Pokorny, R., Dixon, D. R., Schweiger, M. J. and Kruger, A. A. (2017). Effects of Heating Rate, Quartz Particle Size, Viscosity, and Form of Glass Additives on High-Level Waste Melter Feed Volume Expansion. Journal of the American Ceramic Society100, 583-591. doi:10.1111/jace.1462
[urlnadstranka] => [iduzel] => 52731 [canonical_url] => [skupina_www] => Array ( ) [url] => /pokorny [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 20739 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/staff [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20653] => stdClass Object ( [nazev] => Selected publications [seo_title] => Selected papers [seo_desc] => [autor] => [autor_email] => [obsah] =>

2023

  • a
  • Kunc J., Kloužek J., Vernerová M., Cincibusová P., Ferkl P., Hall M., Eaton W., Hrma P., Guillen D., Kruger A., Pokorný R. (2023): Effect of feed composition on the production of off-gases during vitrification of simulated low-activity nuclear waste. Progress in Nuclear Energy. 166, 104932. doi: 10.1016/j.pnucene.2023.104932
  • Ferkl P., Hrma P., Kloužek J., Kruger A., Pokorný R. (2023): Cold-cap structure in a slurry-fed electric melter. International Journal of Applied Glass Science. doi: 10.1111/ijag.16645.
  • Pokorný R., Vernerová M., Kloužek J., Cincibusová P., Kohoutková M., Pezl R., Ferkl P., Hrma P., Podor R., Schuller S.,Kruger A. (2023): Transient Melt Formation and its Effect on Conversion Phenomena during Nuclear Waste Vitrification – HT-ESEM Analysis. Journal of the American Ceramic Society. doi: 10.1111/jace.19361
  •  Sponer J.E., Klouzek J., Vyravsky J., Wunnava S., Scheu B., Braun D., Mojzsis S.J., Palacky J., Vorlickova M., Sponer J., Matyasek R., Kovarik A. (2023): Influence of Silicate Rock Glass Compositions on the Efficacy of Prebiotic RNA Polymerization Reactions: The Case of 3’,5’ Cyclic Guanosine Monophosphate. ChemSystemsChem. doi: 10.1002/syst.202300016
  • Ferkl P., Hrma P., Klouzek J., Kruger A., Pokorny R. (2023): Effect of material properties on batch-to-glass conversion kinetics. International Journal of Applied Glass Science. doi: 10.1111/ijag.16631
  • Rigby J.C., Dixon D.R., Kloužek J., Pokorný R., Thompson P.B.J., Scrimshire A., Kruger A.A., Bell A.M.T., Bingham P.A. (2023): Alternative reductants for foam control during vitrification of high-iron High Level Waste (HLW) feeds. Journal of Non-Crystalline Solids. 608, 122240. doi: 10.1016/j.jnoncrysol.2023.122240
  • Ferkl P., Hrma P., Abboud A., Guillen D., Vernerová M., Kloužek J., Hall M., Kruger A., Pokorny R. (2023): Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter. International Journal of Applied Glass Science. doi: 10.1111/ijag.16615
  • Kolářová M., Kloužková A. Kohoutková M., Kloužek J., Dvořáková P. (2023): Degradation Processes of Medieval and Renaissance Glazed Ceramics. Materials. 16, 375. doi: 10.3390/ma16010375
  • Marcial J., Cicconi M., Pearce C., Klouzek J., Neeway J., Pokorny R., Vernerova M., McCloy J., Nienhuis E., Sjoblom R., Weaver J., Hand R., Hrma P., Neuville D., Kruger A. (2023): Effect of network connectivity on behavior of synthetic Broborg Hillfort glasses. Journal of the American Ceramic Society. 106, 1716. doi: 10.1111/jace.18778
  • Khawand J., Kloužek J., Vernerová M., Cincibusová P., Hrma P., Kruger A., Pokorný R. (2023): Effect of Sucrose on the Oxidation-Reduction Conditions and Retention of Rhenium during Vitrification of Low-Activity Waste. Journal of Nuclear Materials. 573, 154155. doi: 10.1016/j.jnucmat.2022.154155.

2022

  • Lee S., Jin T., Rivers E., Klouzek J., Luksic S., Marcial J., George J., Dixon D., Eaton W., Kruger A. (2022): Effect of Sucrose on Technetium and Rhenium Retention during Vitrification of Low-Activity Wastes. Journal of the American Ceramic Society. 105, 7321-7333. doi: 10.1111/jace.18701
  • Rigby J., Dixon D., Cutforth D., Marcial J., Klouzek J., Pokorny R., Kruger A., Scrimshire A., Bell M., Bingham P. (2022): Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials. Journal of Nuclear Materials.  569, 153946. doi: 10.1016/j.jnucmat.2022.153946
  • Cincibusova P., Jebava M., Tonarova V., Nemec L. (2022): Impact of melt flow on the process of glass melting. Journal of Asian Ceramic Societies. 10, 621-637. doi: 10.1080/21870764.2022.2099102
  • Marcial J., George J., Ferkl P., Pokorny R., Kissinger R., Crum J., Klouzek J., Hrma P., Kruger A., (2022): Elemental mapping and iron oxidation state measurement of synthetic low-activity waste feeds. Journal of Non-Crystalline Solids591, 121725. doi: 10.1016/j.jnoncrysol.2022.121725
  • Ferkl P., Hrma P., Abboud A., Guillen D., Khawand J., Kopal I., Kohoutková M., Vernerová M., Kloužek J., Hall M., Kruger A., Pokorný R. (2022): Conversion kinetics during melting of simulated nuclear waste glass feeds measured by dissolution of silica. Journal of Non-Crystalline Solids. 579, 121363. doi: 10.1016/j.jnoncrysol.2021.121363 
  • Marcial J., Luksic S., Klouzek J., Vernerova M., Cutforth D., Varga T., Hrma P., Kruger A., Pokorny R. (2022): In-situ x-ray and visual observation of foam morphology and behavior at the batch-melt interface during melting of simulated waste glass. Ceramics International. 48, 7975-7985. doi: 10.1016/j.ceramint.2021.11.344
  • Marcial J., Kloužek J., Vernerová M, Ferkl P., Lee S., Cutforth D., Hrma P., Kruger A., Pokorný R. (2022): Effect of Al and Fe sources on conversion of high-level nuclear waste feed to glass. Journal of Nuclear Materials. 559, 153423. doi: 10.1016/j.jnucmat.2021.153423
  • Yatskiv R., Kostka P., Grym J., Zavadil J. (2022): Temperature sensing down to 4 K with erbium-doped tellurite glasses. Journal of non-crystalline solids 57, 121183. doi: 10.1016/j.jnoncrysol.2021.121183

2021

  • Kloužek J., Cincibusová P., Vernerová M., Hrma P., Pokorný R. (2021): Visual observation of foaming at the batch-melt interface during melting of soda-lime-silica glass. Ceramics-Silikaty 65, 410-416. doi: 10.13168/cs.2021.0044
  • Kolářová M., Kloužková A., Stodolová K., Kloužek J., Dvořáková P., Kohoutková M. (2021): Interaction of historical lead glazes with corrosive media. Ceramics-Silikaty 65, 417-426. doi: 10.13168/cs.2021.0045
  • Bosak O., Kubliha M., Kostka P., Minarik S., Domankova M., Le Coq D. (2021): Electrical and Dielectric Properties of Sb2O3-PbCl2-AgCl Glass System. Russian journal of electrochemistry 57, 681-687. doi: 10.1134/S1023193521070041
  • Kubliha M., Bosak O., Kostka P., Labas V., Lukic-Petrovic S., Celic N., Tanuska P., Kebisek M., Soltani M.T. (2021): Experimental and Simulation of Electric Transport in Alkali Antimonite Glasses. Russian journal of electrochemistry 57, 688-699. doi: 10.1134/S1023193521070077
  • Ferkl P., Hrma P., Kloužek J., Vernerová M., Kruger A., Pokorný R. (2021): Model for batch-to-glass conversion: Coupling the heat transfer with conversion kinetics. Journal of Asian Ceramic Societies. 9, 652-664. doi: 10.1080/21870764.2021.1907914
  • Jebavá M., Hrbek L., Cincibusová P., Němec L. (2021): Energy distribution and melting efficiency in glass melting channel: Effect of configuration of heating barriers and vertical energy distribution. Journal of Non-Crystalline Solids. 562, 120776. doi: 10.1016/j.jnoncrysol.2021.120776
  • Lee S., Cutforth D., Mar D., Klouzek J., Ferkl P., Dixon D., Pokorny R., Hall M., Eaton W., Hrma P., Kruger A. (2021): Melting rate correlation with batch properties and melter operating conditions during conversion of nuclear waste melter feeds to glasses. International Journal of Applied Glass Science12, 398-414. doi: 10.1111/ijag.15911
  • Luksic S., Pokorny R., Hrma P., Varga T., Rivers E., Buchko A., Klouzek J., Kruger A. (2021): Through a glass darkly: In-situ x-ray computed tomography imaging of feed melting in continuously fed laboratory-scale glass melter. Ceramics International. 47, 15807-15818. doi:  10.​1016/​j.​ceramint.​2021.​02.​153
  • Abboud A., Guillen D., Hrma P., Kruger A., Klouzek J., Pokorny R. (2021): Heat Transfer from Glass Melt to Cold Cap:  Computational Fluid Dyamics Study of Cavities beneath Cold Cap. International Journal of Applied Glass Science12, 233-244. doi: 10.1111/ijag.15863
  • Marcial J., Pokorný R., Kloužek J., Vernerová M., Lee S., Hrma P., Kruger A. (2021): Effect of water vapor and thermal history on nuclear waste feed conversion to glass. International Journal of Applied Glass Science12, 145-157. doi: 10.1111/ijag.15803
  • Ueda N., Vernerová M., Kloužek J., Ferkl P., Hrma P., Yano T., Pokorný R. (2021): Conversion kinetics of container glass batch melting. 103, 34-44. Journal of the American Ceramic Society. doi: 10.1111/jace.17406
  • Kostka P., Yatskiv R., Grym J., Zavadil J. (2021): Luminescence, up-conversion and temperature sensing in Er-doped TeO2-PbCl2-WO3 glasses. Journal of Non-Crystalline Solids. doi: 10.1016/j.jnoncrysol.2020.120287

2020

  • Pereira L., Kloužek J., Vernerová M., Laplace A., Pigeonneau F. (2020). Experimental and Numerical Investigations of an Oxygen Single Bubble Shrinkage in a Borosilicate Glass-Forming Liquid Doped with Cerium Oxide. Journal of the American Ceramic Society. 103, 6736-6745. doi: 10.1111/jace.17398
  • Lee S., Ferkl P., Pokorny R., Klouzek J., Hrma P., Eaton W., Kruger A. (2020): Simplified melting rate correlation for radioactive waste vitrification in electric furnaces. Journal of the American Ceramic Society. 103, 5573-5578.  doi: 10.1111/jace.17281
  • Kolářová M., Kloužková A., Kloužek J., Schwarz J. (2020). Thermal behaviour of glazed ceramic bodies. Journal of Thermal Analysis and Calorimetry. 142, 217-229. doi: 10.1007/s10973-020-09484-3
  • Luksic S., Pokorny R., Jaime G., Hrma P., Varga T., Reno L., Buchko A., Kruger A. (2020). In situ characterization of foam morphology during melting of simulated waste glass using x-ray computed tomography. Ceramics International. 46, 17176-17185. doi: 10.1016/j.ceramint.2020.02.215
  • Abboud  A.W., Guillen D.P., Pokorny R. (2020): Effect of Cold Cap Coverage and Emissivity on the Plenum Temperature in a Pilot‐Scale Waste Vitrification Melter. International Journal of Applied Glass Science. 11, 357-368. doi: 10.1111/ijag.15031
  • Hujova M., Klouzek J., Cutforth, D., Lee S., Miller M., Kruger A., Hrma P., Pokorny R. (2020): Feed-to-glass conversion during low activity waste vitrification. Ceramics International. 46, 9826-9833. doi: 10.1016/j.ceramint.2019.12.256
  • Guillen D.P., Lee S., Hrma P., Traverso J., Pokorny R., Klouzek J., Kruger A.A. (2020): Evolution of Chromium, Manganese and Iron Oxidation State during Conversion of Nuclear Waste Melter Feed to Molten Glass. Journal of Non-Crystalline Solids. 531, 119860.  doi: 10.1016/j.jnoncrysol.2019.119860
  • Lee S., McCarthy B., Hrma P., Chun J., Pokorny R., Klouzek J, Kruger A. (2020): Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: effects of temperature and incorporation of solid components. Journal of the American Ceramic Society. 103, 1615-1630. doi: 10.1111/jace.16876
  • Pokorny R., Hrma P., Lee S., Klouzek J., Choudhary M., Kruger A. (2020): Modeling batch melting: Roles of heat transfer and reaction kinetics. Journal of the American Ceramic Society. 103, 701-718. doi: 10.1111/jace.16898

2019

  • Goel A., McCloy J.S., Pokorny R., Kruger A.A. (2019): Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview.  Journal of Non-Crystalline Solids: Xdoi: 10.1016/j.nocx.2019.100033
  • Appel C.J., Klouzek J., Nikhil J., Lee S., Dixon D.R., Hrma P., Pokorny R., Schweiger M.J., Kruger A.A. (2019): Effect of sucrose on foaming and melting behavior of a low-activity waste melter feed. Journal of the American Ceramic Society. 102, 7594-7605.doi: 10.1111/jace.16675
  • Hrma P., Klouzek J., Pokorny R., Lee S.,  Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Gas Evolution and Foaming. 102, 5853-5865.Journal of the American Ceramic Society. doi: 10.1111/jace.16484
  • Lee S., Hrma P., Pokorny R., Klouzek J., Eaton W., Kruger A.A. (2019). Glass production rate in electric furnaces for radioactive waste vitrification. 102, 5828-5842. Journal of the American Ceramic Society. doi: 10.1111/jace.16463 
  • Lee S., Hrma P., Pokorny R., Traverso J.J., Klouzek J., Schweiger M.J.,Kruger A.A. (2019). Heat Transfer from Glass Melt to Cold Cap: Effect of Heating Rate. International Journal of Applied Glass Science. 10, 401-413. doi: 10.1111/ijag.13104
  • Hujova M., Klouzek  J., Cutforth D.A., Lee S., Miller M.D., McCarthy B., Hrma P., Kruger A.A., Pokorny R. (2019). Cold-cap formation from a slurry feed during nuclear waste vitrification. Ceramics International. 45, 6405-6412. doi: 10.1016/j.ceramint.2018.12.127
  • Hrma P., Pokorny R., Lee S., Kruger A.A. (2019).  Heat Transfer from Glass Melt to Cold Cap: Melting Rate Correlation Equation. International Journal of Applied Glass Science. 10, 143-150. doi: 10.1111/ijag.12666
  • Jebavá M., Hrbek L., Němec L. (2019). Energy distribution and melting efficiency in glass melting channel: Effect of heat losses, average melting temperature and melting kinetics. Journal of Non-Crystalline Solids . doi: 10.1016/j.jnoncrysol.2019.119478
  • Jilkova K., Mika M., Kostka P., Lahodny F., Nekvindova P., Jankovsky O., Bures R., Kavanova M. (2019). Electro-optic glass for light modulators. Journal of Non-Crystalline Solids. 518, 51-56. doi: 10.1016/j.jnoncrysol.2019.05.014
  • Bosak O, Castro A., Labas V., Trnovcova V., Kostka P., Calvez L., Le Coq D., Kubliha M. (2019). Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2-Ga2S3-NaI Glass System. Russian Journal of Electrochemistry. 55, 501-509. doi: 10.1134/S1023193519060053
  • Kostka P., Ivanova Z.G., Nouadji M., Černošková E., Zavadil J. (2019). Er-doped antimonite Sb2O3−PbO−ZnO/ZnS glasses studied by low-temperature photoluminescence spectroscopy. Journal of Alloys and Compounds700, 866-872.  doi: 10.1016/j.jallcom.2018.11.361

    2018

  • Vernerová M., Němec L., Kloužek J., Hujová M. (2018). Gas Release Phenomena in Soda-lime-silica Glass. Journal of Non-Crystalline Solids. 500, 158-166. doi: 10.1016/j.jnoncrysol.2018.07.058
  • Guillen D.P.,  Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018). Validation Hierarchy for Waste Vitrification Models. Transactions of the American Nuclear Society. 118, 1173-1176. Open Access
  • Guillen D.P., Abboud A.W., Pokorny R., Eaton W.C., Dixon D., Fox K., Kruger A.A. (2018): Development of a Validation Approach for an Integrated Waste Glass Melter Model. Nuclear Technology. 203, 244-260. doi: 10.1080/00295450.2018.1458559
  • McCarthy B.P., George J.L., Dixon D.R.,   Wheeler M., Cutforth D.A., Hrma P., Linn D., Chun J., Hujova M., Kruger, A.A., Pokorny R. (2018). Rheology of simulated radioactive waste slurry and cold cap during vitrification. Journal of the American Ceramic Society. 101, 5020-5029. doi: 10.1111/jace.15755.
  • Hujova M., Pokorny R., Klouzek J., Seungmin L., Traverso J.J., Schweiger M.J., Kruger A.A., Hrma P. (2018). Foaming during Nuclear Waste Melter Feeds Conversion to Glass: Application of Evolved Gas Analysis. International Journal of Applied Glass Science. 9, 487-498. doi: 10.1111/ijag.12353
  • Hrbek L., Jebava M., Nemec L. (2018). Energy distribution and melting efficiency in glass melting channel: Diagram of melt flow types and effect of melt input temperature. Journal of Non-Crystalline Solids. 482, 30-39. doi: 10.1016/j.jnoncrysol.2017.12.009
  • Jebavá M., Němec L. (2018). Role of Glass Melt Flow in Container Furnace Examined by Mathematical Modelling. Ceramics-Silikaty 62, 86-96.  doi: 10.13168/cs.2017.0049
  • Gedikoglu N., Celikbilek Ersundu M.,  Kostka P., Basinova N., Ersundu A.E. (2018). Investigating the influence of transition metal oxides on temperature dependent optical properties of PbCl2–TeO2glasses for their evaluation as transparent large band gap. Journal of Alloys and Compounds .748, 687-693. doi: 10.1016/j.jallcom.2018.03.209
  • Sayyed M.I., Celikbilek Ersundu M., Ersundu A.E., Lakshminarayana G., Kostka P. (2018). Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiation Physics and Chemistry. 144, 419-425. doi: 10.1016/j.radphyschem.2017.10.005

2017

  • Lee S.,  Hrma P., Pokorny R., Klouzek J., VanderVeer B., Rodriguez C., Chun J., Schweiger M., Kruger A. (2017). Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed. MRS ADVANCES211, 603-608. 
    doi: 10.1557/adv.2016.644
  • Kavanová M., Kloužková A., Kloužek J. (2017). Characterization of the interaction between glazes and ceramic bodies. Ceramics-Silikáty. 61, 267–275. doi: 10.13168/cs.2017.0025
  • Lee S., Hrma P., Pokorny R., Klouzek J., VanderVeer B.J., Dixon D.., Luksic S.A., Rodriguez C.P., Chun J.,  Schweiger M.J., Kruger A.A. (2017). Effect of melter feed foaming on heat flux to the cold cap. Journal of Nuclear Materials. 496, 54-65. doi: 10.1016/j.jnucmat.2017.09.016
  • Lee S., Hrma P., Kloužek J., Pokorný R., Hujová M., Dixon D.R., Schweiger M.J., Kruger A.A. (2017): Balance of oxygen throughout the conversion of a high-level waste melter feed to glass. Ceramics International. 4313113-13118.  doi: 10.1016/j.ceramint.2017.07.002
  • Hujova M., Pokorny R., Klouzek J., Dixon D.R., Cutforth A., Seungmin Lee, McCarthy B.P., Schweiger M.J., Kruger A.A., Hrma P. (2017): Determination of Heat Conductivity of Waste Glass Feed and its Applicability for Modeling the Batch-to-Glass Conversion. Journal of the American Ceramic Society. 100, 5096-5106. doi: 10.1111/jace.15052
  • Harris W. H., Guillen D. P., Kloužek J., Pokorný R., Yano T., Lee S.-M., Schweiger M. J., Hrma P. (2017): X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses. Journal of the American Ceramic Society. 100, 3883–3894. doi: 10.1111/jace.14895
  • Rotrekl J., Storch J., Kloužek J., Vrbka P., Husson P., Andresová A., Bendová M., Wagner Z. (2017): Thermal properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with linear, branched and cyclic alkyl substituents. Fluid Phase Equilibria 443, 32-43. doi: 10.1016/j.fluid.2017.03.02 
  • Hujová M., Vernerová M. (2017): Influence of fining agents on glass melting: a review, Part 2. Ceramics-Silikáty, 61, 202-208. doi:10.13168/cs.2017.0017
  • Hujová M., Vernerová M. (2017): Influence of fining agents on glass melting: a review, Part 1. Ceramics-Silikáty, 61, 119-126. doi:10.13168/cs.2017.0006
  • Hrbek L., Kocourková P., Jebavá M., Cincibusová P., Němec L. (2017). Bubble removal and sand dissolution in an electrically heated glass melting channel with defined melt flow examined by mathematical modelling. Journal of Non-Crystalline Solids, 456, 101-113. doi: 10.1016/j.jnoncrysol.2016.11.013
  • Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z. J., Heilman-Moore, J. S., Bonham, C. C., Pokorny, R., Dixon, D. R., Schweiger, M. J. and Kruger, A. A. (2017). Effects of Heating Rate, Quartz Particle Size, Viscosity, and Form of Glass Additives on High-Level Waste Melter Feed Volume Expansion. Journal of the American Ceramic Society. 100, 583-591. doi:10.1111/jace.1462
  • Ivanova Z. G., Zavadil J., Kostka P., Djouama T., Reinfelde M. (2017): Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides. Physica Status Solidi B. 254, No. 6, 1600662. doi: 10.1002/pssb.201600662
  • Kostka P., Kabalci I., Tay T., Gladkov P., Zavadil J. (2017): Investigation of Er doped zinc borate glasses by low-temperature photoluminescence. Journal of Luminescence192, 1104-1109. doi: 10.1016/j.jlumin.2017.06.0102016

2016

  • Pabst W., Gregorová E., Uhlířová T., Nečina V., Kloužek J., Sedlářová I. (2016). Microstructure, elastic properties and High-Temperature behavior of silica refractories, in: Microstructure, elastic properties and High-Temperature behavior of silica refractories: Ceramic Transaction. Wiley. pp. 113-124. doi: 10.1002/9781119234593.ch12
  • Pabst W., Gregorová E., Kloužek J., Kloužková A., Zemenová P., Kohoutková M., Sedlářová I., Lang K., Kotouček M., Nevřivová L., Všianský D. (2016). High-temperature Young’s moduli and dilatation behavior of silica refractories. Journal of the European Ceramics Society, 35, 209-220. doi:10.1016/j.jeurceramsoc.2015.09.020
  • Matějec V., Pedlíková J., Bartoň I., Zavadil J., Kostka P. (2016). Optical properties of As2S3 layers deposited from solutions. Journal of Non-Crystalline Solids, 431, 47-51. doi:10.1016/j.jnoncrysol.2015.04.027

    2015

  • Jebavá M., Dyrčíková P., Němec L. (2015). Modelling of the controlled melt flow in a glass melting space — Its melting performance and heat losses. Journal of Non-Crystalline Solids, 430, 52-63. doi:10.1016/j.jnoncrysol.2015.08.039
  • Kubliha M., Soltani M.T., Trnovcová V., Legouera M., Labaš V., Kostka P., Le Coq D., Hamzaoui M. (2015). Electrical, dielectric, and optical properties of Sb2O3–Li2O–MoO3 glasses. Journal of Non-Crystalline Solids, 428, 42-48. doi:10.1016/j.jnoncrysol.2015.07.021
  • Kostka P., Zavadil J., Iovu M.S., Ivanova Z.G., Furniss D., Seddon A.B. (2015). Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions. Journal of Alloys and Compounds, 648, 237-243. doi:10.1016/j.jallcom.2015.05.135
  • Cincibusová P., Němec L. (2015). Mathematical modelling of bubble removal from the glass melting channel with defined melt flow and the relation between the optimal flow conditions of bubble removal and sand dissolution. Glass Technol.: Eur. of Glass Sci. and Technol. Part A, 56, 52-62. Ingentaconnect
  • Vernerová M., Kloužek J., Němec L. (2015). Reaction of soda-lime-silica glass melt with water vapour at melting temperatures. Journal of Non-Crystalline Solids , 416, 21-30. doi:10.1016/j.jnoncrysol.2015.02.020
  •  Vernerová M., Cincibusová P., Kloužek J., Maehara T., Němec L. (2015). Method of examination of bubble nucleation in glass melts. Journal of Non-Crystalline Solids411, 59-67. doi:10.1016/j.jnoncrysol.2014.12.025

    2014

  • Zavadil J., Ivanova Z.G. Kostka P., Hamzaoui M., Soltani M.T. (2014). Photoluminescence study of Er-doped zinc–sodium–antimonite glasses. Journal of Alloys and Compounds, 611, 111-116. doi:10.1016/j.jallcom.2014.05.102
  • Kubliha M., Kostka P., Trnovcová V., Zavadil J., Bednarčík J., Labaš V., Pedlíková J., Dippel A.Ch., Liermann H.P., Psota J. (2014): Local atomic structure and electric properties of Ge20Se80-xTex (x=0, 5, 10 and 15) glasses doped with Ho. Journal of Alloys and Compounds, 586, 308-313. doi:10.1016/j.jallcom.2013.10.059
  • Matěj J., Jebavá M. (2014). Oxygen bubble development on a platinum electrode in borosilicate glass melt by the effect of alternating current. Ceramics-Silikaty, 58, 249-259. Open Access
  • Hrbek L., Dyrčíková P., Němec L., Jebavá, M. (2014). Industrial opportunities of controlled melt flow during glass melting, part 2: Potential applications. Ceramics-Silikáty, 58, 202-209. Open Access
  • Dyrčíková P., Hrbek L., Němec L. (2014). Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation. Ceramics-Silikaty, 58, 111-117. Open Access

    2013

  • Zavadil J., Kubliha M., Kostka P., Iovu M., Labas V., Ivanova Z.G. (2013). Investigation of electrical and optical properties of Ge–Ga–As–S glasses doped with rare-earth ions. Journal of Non-Crystalline Solids, 377, 85-89. doi:10.1016/j.jnoncrysol.2013.02.009
  • Bošák O., Kostka P., Minárik S., Trnovcová V., Podolinčiaková J., Zavadil J. (2013). Influence of composition and preparation conditions on some physical properties of TeO2–Sb2O3–PbCl2 glasses. Journal of Non-Crystalline Solids, 377,  74-78. doi:10.1016/j.jnoncrysol.2013.01.014
  •  Kloužková A., Zemenová P., Kohoutková M., Kloužek J.  (2013): Hydrothermal rehydroxylation of kaolinite studied by thermal analysis. Ceramics-Silikaty, 57, 342-347. Open Access
  •  Kloužková A., Mrázová M., Kohoutková M., Kloužek J. (2013). Leucite dental ceramics. Chemické listy, 107, 856-861. (in Czech) Open Access
  • Němec L., Jebavá M., Dyrčíková P. (2013): Glass melting phenomena, their ordering, and melting space utilisation. Ceramics-Silikaty, 57, 275-284. Open Access
  • Jebavá M., Němec L. (2013). Numerical study of glass fining in a pot melting space with different melt-flow patterns. Journal of Non-Crystalline Solids, 361, 47-56. doi:10.1016/j.jnoncrysol.2012.10.029

    2012

  • Kloužková A., Mrázová M., Kohoutková M., Kloužek J. (2012). Preparation of leucite-based composites. Ceramics-Silikaty, 56, 341-346. Open Access
  • Němec L., Vernerová M., Cincibusová P., Jebavá M., Kloužek J. (2012): The semiempirical model of the multicomponent bubble behaviour in glass melts. Ceramics-Silikaty, 56, 367-373. Open Access
  • Jebavá M., Němec L. (2012). The fining performance under the effect of physico-chemical parameters. Ceramics-Silikaty, 56, 286-293. Open Access
  • Němec L., Cincibusová P. (2012). Sand dissolution and bubble removal in a model glass-melting channel with a uniform melt flow. Glass Technol.: Eur. J. Glass Sci. Technol. A, 53, 279-286. Ingentaconnect
  • Cincibusová P., Němec L. (2012). Sand dissolution and bubble removal in a model glass-melting channel with a melt circulation. Glass Technol.: Eur. J. Glass Sci. Technol. A, 53, 150-157. Ingentaconnect
  • Polák M., Němec L. (2012). Mathematical modelling of sand dissolution in a glass melting channel with controlled glass flow. Journal of Non-Crystalline Solids, 358, 1210-1216. doi:10.1016/j.jnoncrysol.2012.02.021
  • Matěj J., Langrová A. (2012). Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulphate. Ceramics-Silikaty, 56, 280-285. Open Access

    2011

  • Tonarová V., Němec L., Kloužek J. (2011). The optimal parameters of bubble centrifuging in glass melts. Journal of Non-Crystalline Solids, 357, 3785-3790. doi:10.1016/j.jnoncrysol.2011.07.028
  • Polák M., Němec L. (2011). Glass melting and its innovation potentials: The combination of transversal and longitudinal circulations and its influence on space utilisation. Journal of Non-Crystalline Solids, 357, 3108-3116. doi:10.1016/j.jnoncrysol.2011.04.020
  • Jebavá M., Němec L. (2011). Bubble removal from glass melts with slow vertical circulations. Ceramics-Silikaty, 55, 232-239. Open Access
  • Macháček J., Kostka P., Liška M., Zavadil J., Gedeon O. (2011. Calculation and analysis of vibrational spectra of PbCl2–Sb2O3–TeO2 glass from first principles. Journal of Non-Crystalline Solids, 357, 2562–2570. doi:10.1016/j.jnoncrysol.2011.03.010
  • Kostka P., Zavadil J., Pedlíková J., Poulain M. (2011). Preparation and optical characterization of PbCl2–Sb2O3–TeO2 glasses doped with rare earth elements. Physica Status Solidi A – Application and Materials Science, 208, 1821-1826. doi: 10.1002/pssa.201084098

    2010

  • Tonarová V., Němec L., Jebavá M. (2010). Bubble removal from glass melts in a rotating cylinder. Glass Technol.: Eur. J. Glass Sci. Technol. A, 51, 165-171. Ingentaconnect
  • Polák M., Němec L. (2010). Glass melting and its innovation potentials: The impact of the input and output geometries on the utilization of the melting space. Ceramics-Silikaty, 54, 212-218. Open Access
  • Zavadil J., Kostka P., Pedlíková J., Ivanova Z.G., Žďánský K. (2010). Investigation of Ge based chalcogenide glasses doped with Er, Pr and Ho. Journal of Non-Crystalline Solids, 356, 2355-2359. doi:10.1016/j.jnoncrysol.2010.02.015

Patents

  • Němec L., Jebavá M., Cincibusová P., Budík P., Tonarová V. (2021). A method of melting glass in a glass melting furnace and a glass melting furnace for carrying out the method of melting glass. Patent No. CZ 309094
  • Němec L., Jebavá M., Cincibusová P., Budík P. (2021). Glass melting furnace with conversion region for converting glass charge into glass melt and conversion method. Patent No. CZ 308684
  • Němec L., Hrbek L., Jebavá M., Brada J. (2019). Schmelzraum eines kontinuirlichen Glassschmelzofens und nach einem darin ausgeführtem Verfahern erhaltene Glassschmelze. German Utility Model No. DE 20 2018 105 160.
  • Němec L., Hrbek L., Jebavá M., Brada J. (2018). Melting space of a continuous glass melting furnace. Patent No. CZ 307659. UPV
  • Polák M., Němec L., Cincibusová P., Jebavá M., Brada J., Trochta M., Kloužek J. (2015). Method of continuous glass melting under controlled convection of glass melt. Patent No. CZ 305432. UPV
  • Polák M., Němec L., Cincibusová P., Jebavá M., Brada J., Trochta M., Kloužek J. (2014). Glass melting furnace for continuous glass melting with controlled melt convection. Patent No. CZ 304703. UPV
  • Němec L., Kloužek J., Tonarová V., Jebavá M. (2014). The device for glass melt fining by centrifuging. Patent No. CZ 304299. UPV
  • Němec L., Kloužek J., Tonarová V., Jebavá M. (2013). Method of glass fining by centrifuging. Patent No. CZ 304044. UPV
  • Kloužek J., Polák M., Hřebíček M., Kaiser K., Tonarová V.: (2012). Crystal non-lead and nonbaryum glass with content of lanthanum and niobium oxides. Patent No. CZ 303117. UPV
[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 20653 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/selected-papers [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20740] => stdClass Object ( [nazev] => Projects [seo_title] => Projects [seo_desc] => [autor] => [autor_email] => [obsah] =>

  • Effect of reducing agents and glass-forming additives on the behavior of rhenium and its
    retention during vitrification of nuclear waste (GAČR, projekt č. 24-11616S, 2024 – 2026)
  • Experimental and mathematical analysis of primary glass-forming melt properties,
    gas evolution, and their relation with primary foam production (MŠMT ČR, program Inter-Excellence – Inter-Action, USA,  č. LUAUS23062, 2023 – 2026)
  • Mathematical Modeling and Experimental Evaluation of Melter Cold Cap for Nuclear Waste Vitrification (Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 166789, 2016-2026)
  • Infrared transmitting glasses based on heavy metal oxides (GAČR, project č. 19-07456S, 2019 – 2021)
  • In-situ analysis of foam layer behavior at the batch-melt interface using laboratory-scale melter vessel (GACR, project No. 19-14179S, 2019 - 2021)
  • Analysis of Foaming – Critical Batch-to-Glass Conversion Process. (The Ministry of Education, Youth and Sports of the Czech Republic, program Inter-Excellence – Inter-Action, USA,  č. LTAUSA18075, 2019 – 2022)
  • Batch-to-Glass Conversion and Chemical Durability of Glass for Vitrification of Low Activity Waste (Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 206349, 2018-2020)
  • Mathematical Modeling and Experimental Evaluation of Melter Cold Cap for Nuclear Waste Vitrification (Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 166789, 2016-2022)
  • Advanced technologies of glass manufacturing (TACR, program Epsilon, projekt No. TH02020316, 2017-2020)
  • Mathematical Modeling and Experimental Evaluation of Melter Cold Cap for Nuclear Waste Vitrification (Battelle Energy Alliance, LLC, Idaho, USA, Contract No. 166789, 2016-2018)
  • Special glasses for optoelectronics, non-linear and fiber optics. (MŠMT ČR and Ministry of the education  SR, programm Mobility - Kontakt, project no.7AMB14SK009, 2014-2015) 
  • Preparation methods and composition of Te-containing glasses for application in photonics. (IGA UCT Prague, project No. 141881501, 2015)
  • Special glasses based on heavy metals oxides.(GA CR, project no.: P106/12/2384, 2012-2014)
  • New glasses and its technologies (TACR, program Alfa, project No. TA01010844, 2011-2014) IS VaVaI
  • Characterisation of the special glasses using physical methods.  (MŠMT ČR and Ministry of the education  SR, programm Mobility - Kontakt, project no.: 7AMB12SK147, 2012-2013)
  • Space utilization as a new quantity of glass melting proces (IGA UCT Prague, project No. 141881001, 2010)
  • New glass and ceramic materials and advanced concepts of their preparation and manufacturing (Ministry of Industry and Trade, project No.: 2A/1TP1-063, 2006-2011, joint project of IIC AS CR, ICT Prague and České lupkové závody, a.s.)
  • Energy-technological optimization of glass production (Ministry of Industry and Trade, project No.: FI-IM3/177, 2006-2009)
  • Industrial research of glass materials and its surface strengthening for use in interior (Ministry of Industry and Trade, project No.: FI-IM5/050, 2008-2010)
  • White Carpathians glass research and educational base (EU, program Cross-border co-operation Slovak republic - Czech republic 2007-2013, project No. 22410420007, 2009-2011)
  • Special glass materials for photonic applications (GA CR, project No.: 104/08/0734, 2008-2010)
  • Primeverre - development, preparation and characterisation of special glasses (Égide agency, France, program ECO-NET, project No. 21360NA, 2009-2010)
  • Investigation of glassy structures by physical methods (Ministry of Education, Youth and Sport CR and Ministry of Education SR, program Kontakt, project No. SK-CZ-0143-09, 2010-2011)
[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 20740 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/projects [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [20741] => stdClass Object ( [nazev] => [seo_title] => Cooperation Partners [seo_desc] => [autor] => [autor_email] => [obsah] =>

Cooperation Partners:

Glass Service, a.s.

Pacific Northwest National Laboratory, USA

Idaho National Laboratory, USA

International Partners in Glass Research, Switzerland

Asahi Glass Co., Japan

The Art Glass School in Valašské Meziříčí

Institute of Photonics and Electronics of the ASCR, v.v.i.

Université de Rennes I, France

STU Bratislava, Faculty of Material Science and Technology in Trnava, Slovakia

Institute of Applied Physics, Academy of Sciences, Moldova

Skikda University, Algeria

Biskra University, Algeria

[poduzel] => Array ( ) [iduzel] => 20741 [canonical_url] => //lam.vscht.cz/department/cooperation [skupina_www] => Array ( ) [url] => /department/cooperation [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [46049] => stdClass Object ( [akce] => Ceramics-Silikaty [objekt] => [odkaz] => http://www.ceramics-silikaty.cz/ [targetblank] => 1 [poduzel] => Array ( ) [iduzel] => 46049 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [46042] => stdClass Object ( [nazev] => Conferences [seo_title] => Conferences [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [poduzel] => stdClass Object ( [46043] => stdClass Object ( [nazev] => 17th Conference on Electric Melting of Glass [seo_title] => 17th Conference on Electric Melting of Glass [seo_desc] => [autor] => [autor_email] => [obsah] =>

TOPICS

All Electric Melting

Hybrid Electric Melting

CO2 Emission Reduction

Paris Climate Agreement

Renewable Electric Energy for Glass Melting

 

Date and Venue: September 10, 2019, UCT Prague, Technická 5, 166 28 Prague

building A, Emil Votoček lecture hall (AI)

PROGRAM

 

 

09:30 – 09:40

Welcome speech

Jaroslav Kloužek (UCT Prague)
09:40 – 10:30

Options for step wise CO2 emission reduction (Invited)

Erik Muijsenberg, Hans Mahrenholtz, Petr Jandáček (Glass Service, a.s.), Stuart Hakes (F.I.C. (UK) Limited), Christoph Jatzwauk (F.I.C. Germany GmbH)
10:30 – 11:00

Melt flow as a factor of glassmelting

Lubomír Němec, Marcela Jebavá, Petra Cincibusová (UCT Prague), Pavel Budík (Glass Service, a.s.)
11:00 – 11:30

Application of molybdenum in the glass industry

Václav Průša (Plansee)
11:30 – 12:00

Large electric furnaces & superboosting – Is this the future for CO2 reduction?

Stuart Hakes (FIC UK Limited), Christoph Jatzwauk (FIC Germany GmbH)
12:00 – 13:15

LUNCH

 
13:15 – 13:45

Ways to increase performance and durability of all-electric furnaces. Can melt 7t /m2day? Can durability increase up to 10 years?

Josef Smrček (ELECTROHEAT Prague)
13:45 – 14:15

Electrical heating systems for glass conditioning

Joachim Gesslein (HORN Glass Industries AG)
14:15 – 14:45

COFFEE BREAK

 
14:45 – 15:15

Electric melting of Lead Crystal Glass in optic quality

Jan Kořenský, Ladislav Novák, Studio Bijou
15:15 – 15:45

Forming of cracks in all-electric tanks and corrosion by bubbles

Josef Smrček (ELECTROHEAT Prague) at al.
15:45

Discussion

 

conference committee: Jaroslav Kloužek, Erik Muijsenberg, Marcela Jebavá, Richard Pokorný
contact: marcela.jebava@vscht.cz
webpage: www.cemg.cz

PARTNERS

                                                     
                   


 

[urlnadstranka] => [obrazek] => [iduzel] => 46043 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/conferences/electric-glass-melting [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [53799] => stdClass Object ( [nazev] => Seminar on batch melting [seo_title] => Seminar on batch melting [seo_desc] => [autor] => [autor_email] => [obsah] =>

Seminar on batch melting

 

Datum a místo konání: June 6th & 7th, 2019, Pacific Northwest National Laboratory, Richland, WA, USA

PROGRAM

THURSDAY, June 6, 2019

 

 

8:20

Get together, Badging at PNNL, Travel to APEL

V. Saldana (PNNL)

8:45

Welcome to Richland, PNNL, APEL

B. Harp, A. Kruger (DOE ORP)

W. Eaton (PNNL)

9:00

WTP - The Remediation of the Hanford Legacy in a Cost-Effective Manner

A. Kruger (DOE ORP)

9:20

WTP melters and operating plans

W. Eaton (PNNL)

9:40

Processability of High Waste Loading LAW Feeds

I. Muller (VSL)

10:00

Coffee break

 

10:20

Thermal Conductivity in Reacting Batch

I. Peterson (Corning)

10:40

Foam under cold cap

P. Hrma (PNNL)

11:00

In-situ X-Ray CT

S. Luksic (PNNL)

11:20

Evolved Gas Analysis

J. Klouzek (UCT Prague)

11:40

Effect of sucrose on melting of LAW feed

S. Lee (PNNL)

12:00

Effect of feed history and atmosphere on foaming

J. Marcial (UCT Prague)

12:20

Lunch break

 

14:00

Transfer to WTP & WTP Tour

A. Kruger (DOE ORP)

18:00

Dinner

 

PROGRAM

FRIDAY,

June 7, 2019

 

   

8:30

Lab tour APEL – Cold cap team lab

S. Lee, W. Eaton, M. Schweiger (PNNL)

9:30

Lab tour APEL - other labs

J. Vienna, J. Matyas, J. Ryan, D. Kim (PNNL)

10:00

Coffee Break

 

10:20

LSM Testing

D. Dixon (PNNL)

10:40

Insight into nuclear glass synthesis: experimental and modelling approach

S. Schuller (CEA Marcoule)

11:00

Modeling the conversion in cold cap

R. Pokorny (UCT Prague)

11:20

CFD modeling of a pilot-scale waste vitri
cation melter

D. Guillen (INL)

11:40

Investigating the phenomena at the batch-melt interface using CFD

A. Abboud (INL)

12:00

Experiences with CFD model by Glass Service

M. Jebava (UCT Prague)

12:20

Morphology and Gas Analysis from Reacting Low Activity Waste Feeds

J. George (PNNL)

12:40

Redox behavior of multivalent species in the cold cap

J. Rigby (Sheffield Hallam University)

13:00

Lunch

 

14:00

Lab Tour - high-T X-Ray setup at EMSL

S. Luksic (PNNL)

logo fcht vscht (originál)  

[urlnadstranka] => [obrazek] => [iduzel] => 53799 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/conferences/53799 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [46044] => stdClass Object ( [nazev] => [seo_title] => Refractory materials for glass melting (in Czech) [seo_desc] => [autor] => [autor_email] => [obsah] =>

Žárovzdorné a elektricky vodivé materiály pro tavení skel

 

Termín a místo konání: 18 června 2018, VŠCHT Praha, Technická 5, 166 28 Praha

PROGRAM

 

 

10:00 – 10:15

Přivítaní účastníků a úvodní slovo

Aleš Helebrant, Lubomír Němec
10:15 – 10:45

Chemické složení žáromateriálů

Jaroslav Kutzendörfer, Jiří Hamáček
10:45 – 11:15

Základní vlastnosti žáromateriálů

Jaroslav Kutzendörfer, Jiří Hamáček
11:15 – 11:45

Žárovzdorné materiály pro tavení skel

Jaroslav Kloužek
11:45 – 12:15

Bubliny ve skel pocházející se žárovzdorných materiálů

Jiří Ullrich
12:15 – 13:00

Oběd

 
13:00 – 13:30

Identifikace pevných vměstků ve skle pomocí SEM-EDX mikroanalýzy

Martina Ježíková
13:30 – 14:00

Koroze žáromateriálů při elektrickém tavení skla

Jiří Zajíc
14:00 – 14:30

Děje na styku elektricky vodivých materiálů a skloviny

Jiří Matěj
14:30

Diskuse

logo fcht vscht (originál)  
[urlnadstranka] => [iduzel] => 46044 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/conferences/refractory-materials [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 46042 [canonical_url] => [skupina_www] => Array ( ) [url] => /department/conferences [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

Laboratory of Inorganic Materials Joint Workplace of The UCT Prague and The Institute of Rock Structure and Mechanics, v.v.i.
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015

Technical support by the Computing Centre.
switch to desktop version